Trigger challenges for Run II

Pascal Vanlaer (ULB) Mini-workshop on Scalar search and study in Belgium ULB, 23-24 january 2014

Thresholds

L1 managed to keep reasonable thresholds

L1 Trigger / Column	6E33	7E33	8E33	9E33	
Single EG	20	20	22	22	
Single MU (η<2.1)	12	12	14	14	
Double MU	10, 0pen	10, 0pen	10, 3.5	10, 3.5	
Double MU HighQ (BPH)	0,0	0,0	3, 0	disabled	
нт	150	150	175	disabled	
MET	36	40	40	50	
ET	300	300	300	disabled	
Double-Jet (central)	56	64	64	64	
Quad-Jet (central)	36	40	40	disabled	
Triple-Jet VBF	64,48,28	64,48, <mark>32</mark>	64,48, <mark>32</mark>	disabled	
But we are quite close to runaway			Never used	Super emergency	

L1 upgrade and the scalar

- Improve e/ γ object isolation using calorimeter energy distributions with Pile-Up (PU) subtraction

 \rightarrow Better isolation at L1 –> lower threshods on the SingleEG seeds

• Improve jet finding with PU subtraction

→ Save the Jets / MET – only triggers (Hbb/HiggsEXO)

- Improve hadronic τ ID with a smaller fiducial area

→Critical for H2Tau!

Improve muon p_T resolution (below 2.1 only 2016)

→ Improved L1_Muon seeds

- Improve global Level-1 trigger menu
 - Allow greater number of triggers (2016)
 - Allow more sophisticated algorithms (2016)

→More (and more flexible) multi object triggers at L1 will allow to lower thresholds"

L1 upgrade & 2015

Legacy system with perf. changes Legacy system (perf. roughly unchanged) Perf. changes from upgraded system

erring only to changes affecting performance

- Muon system changes will require optimizations to legacy muon trigger:
 - CSC ME1/1(a) un-ganging and ME4/2 stations added
 - RPC RE4/2 RE4/3 stations added
- In addition other "purely L1" tuning is foreseen:
 - New DTTF LUTs (optimized for rate reduction)
 - New TFs quality definitions & GMT pT ass. Optimizations
 - L1 muon isolation @ GMT (1) or in endcap region (2) (NOT in 2015!)
- New prototype of Layer2 will operate on top of optimized RCT algos to provide:
 - More efficient tau triggers
 - Better EG/tau isolation
 - PU subtraction algorithms @ L1
- Most of the system is legacy one with some modifications
- Improvements for HI running (not discussed here)

HLT ½ rate menu

1 kHz -> need factor 2 rate reduction on average

 P_T thresholds for a factor 2 reduction on each HLT path:

2012	2015			
HLT_Mu 17 _Mu 8	HLT_Mu23_Mu10			
HLT_Ele 17 _CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_Ele 8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL	HLT_Ele 30 _CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL _Ele 27 _CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoV			
HLT_IsoMu <mark>24</mark> _eta2p1	HLT_IsoMu 34 _eta2p1			
HLT_IsoMu 20_ WCandPt <mark>80</mark>	HLT_IsoMu 25_ WCandPt <mark>90</mark>			
HLT_IsoMu18_CentralPFJet30_CentralPFJet25	HLT_IsoMu22_CentralPFJet35_CentralPFJet30			
HLT_Ele <mark>27</mark> _WP80	HLT_Ele <mark>36</mark> _WP80			
HLT_Ele 27_ WP 80 _CentralPFJet 80	HLT_Ele36_WP80_CentralPFJet95			
HLT_Ele24_WP80_CentralPFJet35_CentralPFJet25	HLT_Ele36_WP80_CentralPFJet40_CentralPFJet30			
HLT_IsoMu 17 _eta2p1_LooseIsoPFTau 20	HLT_IsoMu 30 _eta2p1_LooseIsoPFTau 45			
HLT_IsoMu 15 _eta2p1_L1ETM20	HLT_IsoMu 25 _eta2p1_L1ETM20			
HLT_DoubleMediumIsoPFTau <mark>30</mark> _Trk1_eta2p1_Reg_ Jet <mark>30</mark>	HLT_DoubleMediumIsoPFTau45_Trk1_eta2p1_Reg_ Jet30			
HLT_Photon <mark>26</mark> _R9Id85_OR_CaloId10_Iso50_Photon 18 _R9Id85_OR_CaloId10_Iso50_Mass70	HLT_Photon 34 _R9Id85_OR_CaloId10_Iso50_Photon 24 _R9Id85_OR_CaloId10_Iso50_Mass70			
HLT_Photon36_R9Id85_Photon22_R9Id85	HLT_Photon42_R9Id85_Photon28_R9Id85			
HLT_PFMET150	HLT_PFMET 200			
HLT_QuadPFJet82_65_48_35_BTagCSV_VBF	HLT_QuadPFJet95_75_55_40_BTagCSV_VBF			

6

+ need to account for more paths (Run I parked triggers; new / HiggsExo signals)

HLT objects and the scalar

- Better consistency of offline and HLT reconstruction
 - Electrons: PF clustering; H/E; fbrem; laser corrections
 - PF isolation
 - Tighter cuts in single-lepton paths
 - WH->Inubb; H->WW->Inujj
- Improved muon efficiency vs. pile-up and for nearby muons
- MET cleanup
 - save MET-based paths (VBF H->invis.; ZH->nunubb)
- Improved tau ID and isolation
 - Purer lepton+tau_h and di-tau_h paths to keep low p_{T} thresholds
- Improved PFJets at HLT
- Improved b-tagging
 - ZH->nunubb; WH->lnubb (l+b-tag; w/ single-top)

Egamma L1

Current: regional ID; absolute local isolation in 3x3 tower region

Egamma L1 (2)

- 2x1 cluster with regional ID
- Identical performance to the one in 2012 Egamma for relaxed electrons
- Improved Isolation performance (enhanced flexibility, <u>factor of 2-3</u> <u>reduction in rate with minimal</u>

95% Threshold [GeV]

Rate [Hz]

Egamma HLT

Double-e HLT_Ele17_Ele8

Muon L1

RPC PACT: new RE4 chambers

Improvement of PAC trigger efficiency (3 out of 4 layers to generate and RPC trigger candidate)

We are not aiming for better pT resolution with RE4.

Further studies to optimize rate reduction/efficiencies testing different GMT muon qualities

MC data efficiency study for 16 GeV L1T muons.

Muon HLT

Fixed pile-up dependence; feedback from PAGs requested Performance for cuts as in 2012 shown below

- current cuts are on transverse impact parameter and track $\chi^{\scriptscriptstyle 2}$
- each PAG should consider which paths may be affected by these cuts (e.g. displaced vertex? b-tagging?) and check our proposal → we'll provide a recipe for the new algorithm
- for now, the New Cascade was put in a pull request with loose cuts (9E99) that reproduce the old behaviour: https://github.com/cms-sw/cmssw/pull/1521

35

Number of PV

Taus L1

- Based on 2x1 clusters
- Pt assignment can take into account 2x1 + contiguous 4x4 regions (account for leaks)
- <u>Isolation:</u> 12x12 Jet vs Tau Pt, Relative
- Efficiency plateau reaches 100% efficiency

Wis

Tau HLT

	Rate at 7e33 cm ⁻² s ⁻¹		Rate reduction		"Half	
Path name	L1 [kHz]	HLT [Hz]	L2/L1	HLT/L2	rate" threshold	
IsoMu <mark>17</mark> _LooseIsoPFTau <mark>20</mark>	7.7	13	1.2%	16%	30 / 45	
Ele <mark>22</mark> _WP90Rho_LooseIsoPFTau <mark>20</mark>	~18†	30	0.5%	25%	30 / 45	
DoubleMediumPFTau <mark>30</mark> _Trk1_Jet30	~9†	25	5.1%	6.0%	42	
DoubleMediumPFTau <mark>35</mark> _Trk1 [Prong1/TauParked]	~9†	6/48	10%	0.8/6.5%	_	

(†) For L1EG and L1DoubleTau with an OR between Iso and NoIso seeds

- Minimal requirement is to reduce current rate by 2 to compensate increase of luminosity and energy (they give factor of ~4)
- "Half rate" thresholds
 "
 - ~30GeV for lepton (vs 20 GeV now), and ~45 GeV for tau (vs 20-30 GeV now)
 - => Z-candle basically killed, also H125 affected
- Purity is a key to keep both acceptable rate and reasonable thresholds
 - Currently PFTau@HLT with isolation reduces rate by factor of ~5 compared to ~100 for tight e/mu (or offline tau)! => it is a key issue!
 - Where factor of ~2.5 from Pt cut, ~1.5 for track finding, and (only!) ~1.5 from isolation

Tau HLT (2)

PFlow used

- Good resolution => narrow turn-on
- High efficiency
- but time consuming
 - Full tracking
- Rate mitigated before tracking by L2
 - L2caloTaus (R=0.2) with pixel isolation
 - CaloMET
 - Lepton
- Simple Tau-Id HLT (old offline algo):
 - Leading track finding
 - Trk-based Isolation
 => high fake-rate
- Main concerns
 - Improve purity
 - Speed-up tracking (esp. for di-tau)

Current Tau-Id and isolation at HLT

- Cone-based Tau-Id (old offline algorithm) with PFlow
 - Leading track finding (close to jet axis)
 - Loose track quality to keep high efficiency
 - Fixed cone with size depending on trigger path (threshold) R=0.15-0.18
 - Track isolation in a ring around leading track
 - Track veto (Pt>1.5GeV for loose, Pt>1GeV for medium WP)
 - Tight track quality for PU-robustness (\geq 8hits, \geq 3pixel hits)
 - No calo (ECal) based isolation to reduce PU-dependence
 - Signal track counting in some paths
 - No. of tracks <3 ("1-prong") or <5 ("1+3-prongs")
 - With very (too) loose track quality as for lead track finding

Efficiency

- → PU dependency esp. for "1-prong"
- Simple, fast and robust algorithm, but with high (fake) rate
 - Effective also for high-Pt taus

Higgs Workshop, CERN, 5 December 2013

τ-jet axis

TRG-12-001

signal cone R

Foreseen improvements to Tau@HLT

Two options for Id

- **Baseline**: Improve simple and fast track finding
 - Use shrinking cone (high efficiency for low Pt, suppressed rate)
 - Improved track counting (e.g. 1 or 3 tracks) \rightarrow track quality to be studied
- **Advanced**: Decay mode reconstruction (a la offline HPS algorithm)
 - CPU intensive due to combinatorics
 - potentially more sensitive on fakes/PU/quality of PFlow reco
 - A lot of tuning needed because of differences between offline/online tracking and PFlow,
 - => postponed for now
- Isolation:
 - Currently: veto candidates with tracks with Pt>1.5(1.0) GeV in isolation ring for a loose(medium) isolation WP
 - Tight isolation track quality criteria
 - \geq 8 hits and \geq 3 pixel hits => should be relaxed
 - Check ECal for isolation \rightarrow PU correction needed (rho)
 - Is it useful in high PU condition (<PU>~50)?

M.Bluj

B-tagging

FastPV @ L3, b vs g

Pixel-hit based primary vertex finder (FastPV) L2: pixel tracks / L3: pixel+sistrip tracks

Ttbar; 13 TeV; BX25; PU25 and PU45

Original @ L3, b vs g

Tools and samples

New OpenHLT

https://twiki.cern.ch/twiki/bin/viewauth/CMS/NewOpenHLT https://twiki.cern.ch/twiki/bin/view/CMS/OpenHLTReport

• 13 TeV samples in CMSSW62

https://twiki.cern.ch/twiki/bin/view/CMS/TriggerStudiesFall13MC62X#HIG_AN1 https://twiki.cern.ch/twiki/bin/view/CMS/TriggerStudiesFall13MC62X#L1T, #TSG, #TOP, #FSQ,...

- PU 40, 25 ns => L = 1.40 x 1034 cm-2s-1(2508 bunches)
- PU 20, 25 ns => L = 0.70 x 1034 cm-2s-1(2508 bunches)
- PU 40, 50 ns => L = 0.75 x 1034 cm-2s-1 (different number of bunches)
- Two samples with PU80BX50, not yet done: GG <u>HToGG</u> 125GeV and <u>VBF</u> <u>HToTauTau</u> 125GeV
- 8 TeV data

≥-E

CMS Experiment at LHC, CERM Data recorded: Mon May 28 01:16:20 2012 CEST Run/Event: 195099-135488125 Sumi section: 65 Orbit/Crossing: 16992111 12295