Max Baak (CERN), on behalf of the Gfitter group (*) Vrije Universiteit Brussel, Friday June 6th, 2014

EPJC 72, 2205 (2012), arXiv:1209.2716

Status and prospects of the electroweak fit of the SM (and beyond)

(*) M. Baak, J. Cuth, J. Haller, A. Höcker, R. Kogler, K. Mönig, M. Schott, J. Stelzer

This presentation:

- Introduction to the Electroweak Fit
 - Inputs to the electroweak fit
 - Full set of 2-loop calculations and theory uncertainties
- Predictions for key observables after the Higgs
- Modified Higgs couplings
- ✓ Prospects for LHC-300 and ILC/GigaZ
- Conclusion & Outlook

A Generic Fitter Project for HEP Model Testing

- Gfitter = state-of-the-art HEP model testing tool
- Latest results always available at: <u>http://cern.ch/Gfitter</u>
 - (Most) results of this presentation: EPJC 72, 2205 (2012)
 - LHC-300 and ILC/GigaZ prospects paper to appear on arXiv in next weeks !

- Gfitter software and features:
- Modular, object-oriented C++, relying on ROOT, XML, python, etc.
- Core package with data-handling, fitting, and statistics tools
- Independent "plug-in" physics libraries: SM, 2HDM, multiple BSM models, ...

- Observables receive quantum loop corrections from 'unseen' virtual effects.
- ✓ If system is over-constrained, one can fit for unknown parameters or test the model's self-consistency.
- ✓ If precision is better than typical loop factor (α≈1/137), test the model or try to obtain info on new physics in loops.
 - For example, in the past EW fits were used to predict the Higgs mass.

Global EW fits: a long history

- Top mass predictions from loop effects available since ~1990.
 - Official LEPEW fit since 1993.
- The EW fits have always been able to predict the top mass correctly!

Global EW fits: many fit codes

- EW fits performed by many groups in past and present.
 - D. Bardinet al. (ZFITTER), G. Passarino et al. (TOPAZ0), LEPEW WG (M. Grünewald, K. Mönig et al.), J. Erler (GAP), Bayesian fit (M. Ciuchini, L. Silvestrini et al.), etc ...
 - Important results obtained!
- Several groups pursuing global beyond-SM fits, especially SUSY.
- Global SM fits also used at lower energies [CKM-matrix].
- Fits of the different groups agree very well.
- Some differences in treatment of theory errors, which just start to matter.
 - E.g. theoretical and experimental errors added linearly (= conservative) or • quadratically.
 - In following: theoretical errors treated as Gaussian (quadratic addition.)

March 200

 $\Delta \chi^2$

7

m_{l imit} = 160 GeV

The predictive power of the SM

- As the Z boson couples to all fermions, it is ideal to measure & study both the electroweak and strong interactions.
- Tree level relations for $Z \rightarrow f\bar{f}$
 - $i\bar{f}\gamma^{\mu}\left(g_{V,f}-g_{A,f}\gamma_{5}\right)fZ_{\mu}$ we
- Prediction EWSB at tree-level:

$$\frac{M_W^2}{M_Z^2 \cos \theta_W^2} = 1$$

- The impact of loop corrections
 - Absorbed into EW form factors: ρ, κ, Δr
 - Effective couplings at the Z-pole
 - Quadraticly dependent on m_t, *logarithmic* dependence on M_H

 $g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$ $g_{A,f} = \sqrt{\rho_Z^f} I_3^f$ $\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$ $M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_F M_Z^2}} \right)$

Max Baak (CERN)

Hunt for the Higgs

Gfitter group, EPJC 72, 2003 (2012)

- M_H was last missing input parameter of the electroweak fit
- Indirect determination from EW fit (2012): M_H = 96⁺³¹₋₂₄ GeV
 - With direct limits incorporated in the EW fit: M_H = 120⁺¹²₋₅ GeV

The SM fit with Gfitter, including the Higgs

- Discovery of Higgs-like boson at LHC
- Cross section, production rate time branching ratios, spin, parity sofar compatible with SM Higgs boson.
- This talk: assume boson is SM Higgs.
- Use in EW fit: M_H = 125.7 ± 0.4 GeV
- ATLAS: $M_H = 126.0 \pm 0.4 \pm 0.4 \text{ GeV}$ CMS: $M_H = 125.3 \pm 0.4 \pm 0.5 \text{ GeV}$ [arXiv:1207.7214, arXiv:1207.7235]
- Change in average between fully uncorrelated and fully correlated systematic uncertainties is minor: $\delta M_H : 0.4 \rightarrow 0.5 \text{ GeV}$

Unique situation:

- For first time SM is fully over-constrained.
- And for first time electroweak observables can be unambiguously predicted at loop level.
- Powerful predictions of key observables now possible, much better than w/o M_H.

Can now test for:

- \rightarrow Self-consistency of SM.
- \rightarrow Possible contributions from BSM models.
- Part of focus of this talk ...

Measurements at the Z-pole (1/2)

- Total cross-section of $Z \rightarrow f\bar{f}$
 - Expressed in terms of partial decay width of initial and final width:

$$\sigma^Z_{f\bar{f}} = \sigma^0_{f\bar{f}} \frac{s\Gamma^2_Z}{(s - M_Z^2)^2 + s^2\Gamma^2_Z/M_Z^2} \frac{1}{R_{\rm QED}} \quad \text{with} \quad \sigma^0_{f\bar{f}} = \frac{12\pi}{M_Z^2} \frac{\Gamma_{ee}\Gamma_{f\bar{f}}}{\Gamma_Z^2}$$

Corrected for QED radiation

- Full width: $\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{had} + \Gamma_{inv}$
- (Correlated set of measurements.)
- Set of input (width) parameters to EW fit:
 - Z mass and width: M_z , Γ_z
 - Hadronic pole cross section:

$$\sigma_{
m had}^0 = 12\pi/M_Z^2 \,\cdot\, \Gamma_{ee}\Gamma_{
m had}/\Gamma_Z^2$$

Three leptonic ratios (lepton univ.):

$$R_\ell^0 = R_e^0 = \Gamma_{
m had} / \Gamma_{ee} \left(= R_\mu^0 = R_\tau^0
ight)$$

• Hadronic-width ratios: R_b^0 ,

Definition of Asymmetry

• Distinguish vector and axial-vector couplings of the Z

$$A_{f} = \frac{g_{L,f}^{2} - g_{R,f}^{2}}{g_{L,f}^{2} + g_{R,f}^{2}} = \frac{2g_{V,f} g_{A,f}}{g_{V,f}^{2} + g_{A,f}^{2}}$$

Directly related to: $\sin^{2} \theta_{\text{eff}}^{f\bar{f}} = \frac{1}{4Q_{f}} \left(1 + \mathcal{R}e\left(\frac{g_{V,f}}{g_{A,f}}\right) \right)$

- Observables
 - In case of no beam polarisation (LEP) use final state angular distribution to define *forward/backward asymmetry:*

$$A^f_{L\!R} = rac{N^f_L - N^f_R}{N^f_L + N^f_R} rac{1}{\langle |P|_e
angle} \quad A^0_{L\!R} =$$

 $A_{FB}^f = \frac{N_F^J - N_B^J}{N_D^f + N_D^f}$

• Measurements: $A_{FB}^{0,\ell}, A_{FB}^{0,c}, A_{FB}^{0,b}$ A_ℓ, A_c, A_b

 $A_{FB}^{0,f} = \frac{3}{4}A_eA_f$

Ae

Latest averages for M_w and m_{top}

The electromagnetic coupling

- The EW fit requires precise knowledge of $\alpha(M_Z)$ better than 1% level
 - Enters various places: hadr. radiator functions, predictions of M_W and $sin^2\theta^f_{eff}$
- Conventionally parametrized as (α(0) = fine structure constant) :

$$\alpha(s) = rac{lpha(0)}{1 - \Delta lpha(s)}$$

• Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

The electromagnetic coupling

- The EW fit requires precise knowledge of $\alpha(M_7)$ better than 1% level
 - Enters various places: hadr. radiator functions, predictions of M_W and sin² θ_{eff}^{f}
- Conventionally parametrized as $(\alpha(0) = \text{fine structure constant})$:

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha(s)}$$

Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

- [C.Sturm, arXiv: Leptonic term known up to *four* loops (for $q^2 \gg m_1^2$)
- Top quark contribution known up to 2 loops, *small: -0.7x10⁻⁴* [M. Steinhauser, PLB 429, 158 (1998)]

1305.0581]

The electromagnetic coupling

- The EW fit requires precise knowledge of $\alpha(M_Z)$ better than 1% level
 - Enters various places: hadr. radiator functions, predictions of M_W and $sin^2\theta^f_{eff}$
- Conventionally parametrized as (α(0) = fine structure constant) :

$$\alpha(s) = rac{lpha(0)}{1 - \Delta lpha(s)}$$

Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

- Hadronic contribution (from the 5 light quarks) completely dominates overall uncertainty on $\alpha(M_Z)$.
- Difficult to calculate, cannot be obtained from pQCD alone.
 - Analysis of low-energy e⁺e⁻ data
 - Usage of pQCD if lack of data

$$\Delta \alpha_{had}^{(5)}(M_Z) = (274.9 \pm 1.0) \cdot 10^{-1}$$

Similar analysis to evaluation of hadronic contribution to (g-2)_µ

[M. Davier et al., Eur. Phys. J. C71, 1515 (2011)]

Max Baak (CERN)

Theoretical inputs

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!

 $M_W^2\Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha}{G_F M_7^2}}\right)$

Max Baak (CERN)

The ElectroWeak fit of Standard Model

full fermionic 2-loop calc.

In EW fit with Gfitter we use state-of-the-art calculations:

- $\sin^2\theta_{eff}$ Effective weak mixing angle [M. Awramik et al., JHEP 11, 048 (2006), M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
 - Full two-loop + leading beyond-two-loop form factor corrections

Without loop corrections: shift of 400 MeV, 27σ discrepancy!

- Mass of the W boson [M. Awramik et al., Phys. Rev. D69, 053006 (2004)]
- Full two-loop + leading beyond-two-loop + 4-loop QCD correction New!

[Kuhn et al., hep-hp/0504055,0605201,0606232]

- QCD Adler functions at N³LO [P. A. Baikov et al., PRL108, 222003 (2012)] Thad
 - N³LO prediction of the hadronic cross section
- *New: all EWPOs*^(*) *now described at 2-loop level or better!*

Theoretical inputs

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_{W} = (80.385 \pm 0.015) \text{ GeV}$

New: complete set of theoretical uncertainties

• Before Higgs discovery: uncertainty on M_H the largest uncertainty in EW fit. \rightarrow After: new analysis of all theoretical uncertainties.

- Two nuisance pars in EW fit for theoretical uncertainties:
 - δM_W (4 MeV), δsin²θ¹_{eff} (4.7x10⁻⁵)
- Top quark mass: conversion from measurement to MS-bar mass
 - δm_t (0.5 GeV)
- Full fermionic 2-loop corrections of partial Z decay widths (A. Freitas)
 - 6 corresponding nuisance parameters. $\delta\Gamma_z = 0.5 \text{ MeV}$ (exp. ~2 MeV)
- Γ_{had} QCD Adler functions at N³LO
 - 2 nuisance parameters.

Electroweak Fit – Experimental inputs

	$M_H [\text{GeV}]^{(\circ)}$	125.7 ± 0.4	LHC
Latest experimental inputs: Z-pole observables: from LEP / SLC [ADLO+SLD, Phys. Rept. 427, 257 (2006)]	$M_W [{ m GeV}] \ \Gamma_W [{ m GeV}]$	80.385 ± 0.015 2.085 ± 0.042	Tevatron
M _W and Γ _W from LEP/Tevatron [arXiv:1204.0042, arXiv:1302.3415]	$M_Z { m [GeV]} \ \Gamma_Z { m [GeV]}$	91.1875 ± 0.0021 2.4952 ± 0.0023	
m _{top} latest avg from Tevatron+LHC [ArXiv:1403.4427]	$\sigma_{ m had}^0~[{ m nb}] \ R_\ell^0$	41.540 ± 0.037 20.767 ± 0.025	LEP
m _c , m _b world averages (PDG) [PDG, J. Phys. G33,1 (2006)]	$A_{\mathrm{FB}}^{0,\ell} \ A_{\ell}^{(\star)}$	0.0171 ± 0.0010 0.1499 ± 0.0018	SLC
$\frac{\Delta \alpha_{had}}{[Davier et al., EPJC 71, 1515 (2011)]} \alpha_{S} dependency$ $\frac{M_{H}}{M_{H}} from LHC$	$egin{aligned} \sin^2 & heta_{ ext{eff}}^\ell(Q_{ ext{FB}}) \ & A_c \ & A_b \end{aligned}$	0.2324 ± 0.0012 0.670 ± 0.027 0.923 ± 0.020	SLC
7 (+10) free fit parameters:	$egin{aligned} &A_{ ext{FB}}^{0,c} \ &A_{ ext{FB}}^{0,b} \ &A_{ ext{FB}}^{0,b} \ &R_c^0 \end{aligned}$	0.0707 ± 0.0035 0.0992 ± 0.0016 0.1721 ± 0.0030	LEP
m_{H} , m_{Z} , $\alpha_{S}(m_{Z}^{2})$, $\Delta \alpha_{had}^{(o)}(m_{Z}^{2})$, m_{t} , m_{c} , m_{b} 10 theory nuisance parameters	$ \frac{R_b^0}{\overline{m}_c \text{ [GeV]}} $ $ \overline{m}_b \text{ [GeV]} $	0.21629 ± 0.00066 $1.27^{+0.07}_{-0.11}$ $4.20^{+0.17}_{-0.07}$ 172.24 ± 0.01	Toyotron
- E.g. $OIVI_W$ (4 IVIEV), $OSIN^2 \theta'_{eff}$ (4.7X10 ⁻⁵)	$m_t [\text{GeV}]^{(\vee)}$ $\Delta \alpha_{\text{had}}^{(5)}(M_Z^2) (^{\dagger \bigtriangleup)}$	173.34 ± 0.91 2757 ± 10	+ LHC

From the	Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc
Gfitter group:	$M_H [{ m GeV}]^{(\circ)}$	125.7 ± 0.4	yes	$125.7^{+0.4}_{-0.4}$	$93.2\substack{+25.2\\-20.9}$	$93.0\substack{+23.9\\-20.0}$
www.cern.ch /gfitter	M_W [GeV] Γ_W [GeV]	$\begin{array}{c} 80.385 \pm 0.015 \\ 2.085 \pm 0.042 \end{array}$	_	$\begin{array}{c} 80.364 \pm 0.007 \\ 2.091 \pm 0.001 \end{array}$	$\begin{array}{c} 80.358 \pm 0.008 \\ 2.091 \pm 0.001 \end{array}$	80.358 ± 0.006 2.091 ± 0.001
Left: full fit	M_Z [GeV]	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.1996 ± 0.0108	91.2000 ± 0.0103
	$\Gamma_Z [{ m GeV}]$	2.4952 ± 0.0023	_	2.4950 ± 0.0014	2.4946 ± 0.0016	2.4945 ± 0.0016
	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.484 ± 0.015	41.475 ± 0.016	41.474 ± 0.015
result	R^0_ℓ	20.767 ± 0.025	_	20.743 ± 0.017	20.722 ± 0.026	20.721 ± 0.026
	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01626 ± 0.0001	0.01625 ± 0.0001	0.01625 ± 0.0001
Middle: fit	$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	_	0.1472 ± 0.0005	0.1472 ± 0.0005	0.1472 ± 0.0004
	$\sin^2\theta_{\rm eff}^\ell(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23150 ± 0.00006	0.23149 ± 0.00007	0.23150 ± 0.00005
excluding	A_c	0.670 ± 0.027	_	0.6680 ± 0.00022	0.6680 ± 0.00022	0.6680 ± 0.00016
the row	A_b	0.923 ± 0.020	_	0.93463 ± 0.00004	0.93463 ± 0.00004	0.93463 ± 0.00003
	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0738 ± 0.0003	0.0738 ± 0.0003	0.0738 ± 0.0002
	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1032 ± 0.0004	0.1034 ± 0.0004	0.1033 ± 0.0003
Right: not incl. theory errors	R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006
	R_b^0	0.21629 ± 0.00066	_	0.21578 ± 0.00011	0.21577 ± 0.00011	0.21577 ± 0.00004
	\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	-	-
	$\overline{m}_b [{ m GeV}]$	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	-	-
	$m_t \; [\text{GeV}]^{(\bigtriangledown)}$	173.34 ± 0.91	yes	173.81 ± 0.85	$176.98^{+2.33}_{-2.35}$	$177.00^{+2.26}_{-2.28}$
	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2757 ± 10	yes	2756 ± 10	2723 ± 44	2722 ± 42
	$\alpha_s(M_Z^2)$	_	yes	0.1196 ± 0.0030	0.1196 ± 0.0030	0.1196 ± 0.0028

Max Baak (CERN)

The ElectroWeak fit of Standard Model

- Results drawn as *pull values:* → deviations to the
 indirect determinations,
 divided by *total error*.
- Total error: error of direct measurement plus error from indirect determination.
- Black: direct measurement (data)
- Orange: full fit
- Light-blue: fit excluding input from the row
- The prediction (light blue) is often more precise than the measurement!

- Results drawn as *pull values:* → deviations to the
 indirect determinations,
 divided by *total error*.
- Total error: error of direct measurement plus error from indirect determination.
- Black: direct measurement (data)
- Orange: full fit
- Light-blue: fit excluding input from the row
- The prediction (light blue) is often more precise than the measurement!

- No individual value exceeds 3σ
- Largest deviations in b-sector: A^{0,b}_{FB} with 2.5σ
 - \rightarrow largest contribution to χ^2
- Small pulls for M_H , M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, \overline{m}_c , \overline{m}_b indicate that input accuracies exceed fit requirements
- Only very small change from switching between 1 and 2-loop calculations for partial Z widths (and small M_W correction.)
 - Shift in predicted M_W value of 2 MeV.

Goodness of Fit

- Toy analysis: p-value for wrongly rejecting the SM = 21 ± 2 (theo) %
 - p-value is equivalent to 0.8σ
 - Evaluated with 20k pseudo experiments follows χ^2 with 14 d.o.f.
 - For comparison: χ^2_{min} = 18.1 \rightarrow Prob(χ^2_{min} , 14) = 21 %
 - Large value of χ^2_{min} not due to inclusion of M_H measurement.
 - Without M_H measurement: χ^2_{min} = 16.3 \rightarrow Prob(χ^2_{min} , 13) = 23%

Higgs results of the EW fit

10³

M_н [GeV]

10²2×10²

6 10 20

Indirect determination of W mass

- CERN
- $\Delta \chi^2$ 10 Scan of $\Delta \chi^2$ profile versus M_w SM fit w/o M_w measurement 9 **3**σ SM it w/o M_w and M_H measurements Also shown: SM fit with 8 SM fit with minimal input minimal inputs: Here M_w world average [arXiv:1204.0042] 7 M_Z , G_F , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_{H} , and fermion masses 5 Good consistency between total fit and SM w/ minimal inputs **2**σ 3 2 M_{H} measurement allows for 1σ precise constraint on M_w Agreement at 1.4o 80.36 80.37 80.32 80.35 80.38 80.39 80.41 M_w [GeV] Fit result for indirect determination of M_{VV} (full fit w/o M_{VV}): $M_W = (80.3582 \pm 0.0055_{m_t}) \pm 0.0026_{M_Z} \pm 0.0018_{\Delta \alpha_{had}}$ $\pm 0.0020_{\alpha_S} \pm 0.0002_{M_H} \pm 0.0040_{\text{theo}} \text{ GeV},$ $(80.358 \pm 0.008_{tot}) \text{ GeV},$ More precise estimate of M_w than the direct measurements!
 - Uncertainty on world average measurement: 15 MeV

Indirect effective weak mixing angle

- Right: scan of Δχ² profile versus sin²θ^l_{eff}
 - All sensitive measurements removed from the SM fit.
 - Also shown: SM fit with minimal inputs
- M_H measurement allows for very precise constraint on sin²θ^I_{eff}

• Fit result for indirect determination of $\sin^2 \theta_{eff}^l$: $\sin^2 \theta_{eff}^\ell = 0.231489 \pm 0.000029_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{had}}$ $\pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{theo}$,

 $= 0.23149 \pm 0.00007_{\rm tot} \; ,$

- More precise than direct determination (from LEP/SLD) !
 - Uncertainty on LEP/SLD average: 1.6x10⁻⁴

Indirect determination of top mass

- Shown: scan of $\Delta \chi^2$ profile versus m_t (without m_t measurement)
 - M_H measurement allows for significant better constraint of m_t
 - Indirect determination consistent with direct measurements
 - Remember: fully obtained from radiative corrections!
- Indirect result: m_t = 177.0^{+2.3}_{-2.4} GeV

Tevatron+LHC: 173.34 ± 0.76 GeV new D0: 174.98 ± 0.76 GeV

State of the SM: W versus top mass

- Scan of M_W vs m_t, with the direct measurements excluded from the fit.
- Results from Higgs measurement significantly reduces allowed indirect parameter space → corners the SM!

Observed agreement demonstrates impressive consistency of the SM!

State of the SM: W mass versus $sin^2\theta^{I}_{eff}$

- Scan of M_W vs sin² θ^{I}_{eff} , with direct measurements excluded from the fit.
- Again, significant reduction allowed indirect parameter space from Higgs mass measurement.

- M_W and sin²θ^I_{eff} have become *the* sensitive probes of new physics!
 - Reason: both are 'tree-level' SM predictions.

Constraints on Oblique Corrections

- If energy scale of NP is high, BSM physics appears dominantly through vacuum polarization corrections
 - Aka, "oblique corrections"
- Oblique corrections reabsorbed into electroweak form factors
 - $\Delta\rho$, $\Delta\kappa$, Δr parameters, appearing in: M_W², sin² θ_{eff} , G_F, α , etc.
- Electroweak fit sensitive to BSM physics through oblique corrections x

 Oblique corrections from New Physics described through STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

 $O_{meas} = O_{SM,REF}(m_H,m_t) + c_S S + c_T T + c_U U$

- S: New Physics contributions to neutral currents
- T: Difference between neutral and charged current processes – sensitive to weak isospin violation
- U: (+S) New Physics contributions to charged currents. U only sensitive to W mass and width, usually very small in NP models (often: U=0)
- Also implemented: extended parameters (VWX), correction to Z→bb couplings.

[Burgess et al., Phys. Lett. B326, 276 (1994)] [Burgess et al., Phys. Rev. D49, 6115 (1994)]

Fit results for S, T, U

- S,T,U obtained from fit to the EW observables
- SM: M_H = 126 GeV, m_t = 173 GeV
 - This defines (S,T,U) = (0,0,0)
- SM: S, T depend logarithmically on M_H

Fit result:		S	Т	U
$S = 0.05 \pm 0.11$	S	1	+0.90	-0.59
$T = 0.09 \pm 0.13$	Т		1	-0.83
	U			1
$U = 0.01 \pm 0.11$			6.20	364

- Stronger constraints from fit with U=0.
- Also available for $Z \rightarrow bb$ correction.
- No indication for new physics.
- Can now use this to constrain 4th gen, Ex-Dim, T-C, Higgs couplings, etc.

Modified Higgs couplings

- Study of potential deviations of Higgs couplings from SM.
- BSM modeled as extension of SM through effective Lagrangian.
 - Consider leading corrections only.
- Popular benchmark model:
 - Scaling of Higgs-vector boson (κ_{V}) • and Higgs-fermion couplings (κ_{F})
 - No additional loops in the • production or decay of the Higgs, no invisible Higgs decays and undetectable width.

Main effect on EWPO due to
modified Higgs coupling
to gauge bosons
$$(K_V)$$

Involving the longitudinal d.o.f.

- Most BSM models: $\kappa_V < 1$
 - Additional Higgses typically give *positive* contribution to M_{W} .

to

Z/W κ_ν² Ζ/W Z/W

 $L_{V} = \frac{h}{v} \left(2\kappa_{V} m_{W}^{2} W_{\mu} W^{\mu} + \kappa_{V} m_{Z}^{2} Z_{\mu} Z^{\mu} \right)$ $L_{F} = -\frac{h}{v} \left(\kappa_{F} m_{t} \bar{t}t + \kappa_{F} m_{b} \bar{b}b + \kappa_{F} m_{\tau} \bar{\tau}\tau \right)$

• Main effect on EWPO due to Higgs coupling to gauge bosons (κ_V).

•
$$S = \frac{1}{12\pi} (1 - \kappa_V^2) \log\left(\frac{\Lambda^2}{M_H^2}\right)$$
, $T = -\frac{3}{16\pi c_W^2} (1 - \kappa_V^2) \log\left(\frac{\Lambda^2}{M_H^2}\right)$, $\Lambda = \frac{\lambda}{\sqrt{|1 - \kappa_V^2|}}$

- Formulas from: Espinosa et al [arXiv:1202.3697]
- Cut-off scale A represents mass scale of new states that unitarize longitudinal gauge-boson scattering.
 - (As required in this model.)
- λ is varied between 1 and 10 TeV, -0.3 nominally fixed to 3 TeV (4πν).

- Input: Higgs production times decay rate measurements (µ's)
- Interpret as κ_V and κ_F using LHC HXSWG formalism.
 - [arXiv:1209.0040]

Higgs coupling input measurements

- Input measurements: all published Higgs channels.
 - Except for CMS $H \rightarrow \gamma \gamma$ (not yet published; almost)

Experiment	Channel	nnel $\mu_{\rm ggF+ttH}$ μ_{VBF+VH}		Correlation	Ref.
	$H o \gamma \gamma$	published 2	2D-likelihood scan	_	[48]
	$H \to W^+ W^-$	published 2	2D-likelihood scan	_	[48]
ATLAS	$H \rightarrow ZZ$	published 2	2D-likelihood scan	_	[48]
	$H \to \tau^+ \tau^-$	_	$1.40\substack{+0.50\\-0.40}$	_	[49]
	$H o b \overline{b}$	_	$0.20\substack{+0.65\\-0.65}$	_	[50]
	$H o \gamma \gamma$	$0.44\substack{+0.41\\-0.38}$	$1.63\substack{+0.94 \\ -0.81}$	-0.50	[51]
	$H \to W^+ W^-$	$0.70\substack{+0.25\\-0.20}$	$0.70\substack{+0.65\\-0.50}$	-0.26	[52]
CMS	H ightarrow ZZ	$0.80\substack{+0.46\\-0.36}$	$1.70\substack{+2.20\\-2.10}$	-0.75	[53]
	$H \to \tau^+ \tau^-$	$0.50\substack{+0.53\\-0.53}$	$1.30\substack{+0.46\\-0.40}$	-0.40	[54]
	$H ightarrow b \overline{b}$	_	$1.00\substack{+0.50\\-0.50}$	_	[55]

Reproduction of ATLAS and CMS results

Max Baak (CERN)

Higgs coupling results

- Note: some dependency in central value and error on cut-off scale λ.
- 1. EW fit sofar more precise result for κ_V than current LHC experiments.
- 2. EW fit: positive deviation of κ_V from 1.0.
 - (Many BSM models: $\kappa_V < 1$)

EW fit: Higgs coupling results

• EW fit: positive deviation of κ_V from one driven by small tension in W mass prediction versus measurement.

Prospects for the Standard Model fit

Prospects of EW fit tested for two scenarios:

- 1. LHC Run-2+3
- 2. ILC with GigaZ(*)

(*) GigaZ:

- Operation of ILC at lower energies like Z-pole or WW threshold.
 - Allows to perform precision measurements of EW sector of the SM.
- At Z-pole, several billion Z's can be studied within 1-2 months.
- Physics of LEP1 and SLC can be revisited with few days of data.

In following studies:

Central values of input measurements adjusted to M_H = 126 GeV.

• (Except where indicated.)

Future Linear Collider can improve precision of EWPO's tremendously.

- WW threshold scan + kinematic reconstruction, to obtain M_W
 - From threshold scan: δM_W : 15 \rightarrow 5 MeV
- *ttbar threshold scan, to obtain m*t
 - Obtain m_t indirectly from production cross section: $\delta m_t: 0.8 \rightarrow 0.1 \mbox{ GeV}$
- Z pole measurements
 - High statistics: 10^9 Z decays: $\delta R^{0}_{\text{lep}}$: $2.5 \cdot 10^{-2} \rightarrow 4 \cdot 10^{-3}$
 - With polarized beams, uncertainty on $\delta A^{0,f}_{LR}$: $10^{-3} \rightarrow 10^{-4}$, which translates to $\delta \sin^2 \theta^{I}_{eff}$: $1.6 \cdot 10^{-4} \rightarrow 1.3 \cdot 10^{-5}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 1% precision.

ILC prospects: from ILC TDR (Vol-2).

LHC Run-2+3 (300/fb)

- *W* mass measurement : δM_W : 15 \rightarrow 8 MeV
- Final top mass measurement $m_t : \delta m_t : 0.8 \rightarrow 0.6 \text{ GeV}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 3% precision.

LHC prospects: possibly optimistic scenario, but not impossible.

LHC Run-2+3 (300/fb)

- *W* mass measurement : δM_W : 15 \rightarrow 8 MeV
- Final top mass measurement $m_t : \delta m_t : 0.8 \rightarrow 0.6 \text{ GeV}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 3% precision.

For both LHC-300 and ILC:

- Low-energy data results to improve $\Delta \alpha_{had}$:
 - ISR-based (BABAR), KLOE-II, VEPP-2000 (at energy below cc resonance), and BESIII e⁺e⁻ cross-section measurements, in particular around cc resonance.
 - Plus: improved α_s , improvements in theory: $\Delta \alpha_{had}$: $10^{-4} \rightarrow 5 \cdot 10^{-5}$
- Assuming ~25% of today's theoretical uncertainties on M_W and $sin^2\theta_{eff}^I$
 - Implies three-loop EW calculations!
 - δM_W (4 \rightarrow 1 MeV), $\delta sin^2 \theta_{eff}^{I}$ (4.7x10⁻⁵ \rightarrow 1x10⁻⁵) (from Snowmass report)
 - LHC: top quark pole mass uncertainty: $0.50 \rightarrow 0.25 \text{ GeV}$
 - Partial Z decay widths at 3-loop level: factor 2 improvement

Prospects of EW fit

- Logarithmic dependency on $M_H \rightarrow \text{cannot compete with direct } M_H \text{ meas.}$
- Indirect prediction M_H dominated by theory uncertainties.
 - No theory uncertainties:
 - With theory errors (R-fit scheme):
 - Present day theory uncertainties:

$$M_{\rm H} = 126 \pm 7 \, {\rm GeV}$$

$$M_{\rm H} = 126^{+10}_{-9} \, {\rm GeV}$$

$$M_{\rm H} = 126^{+20}_{-17} \, {\rm GeV}$$

 If EWP-data central values unchanged, i.e. keep favoring low value of Higgs mass (94 GeV), ~5σ discrepancy with measured Higgs mass.

- Huge reduction of uncertainty on indirect determinations of m_t , m_W , and $sin^2\theta^{l}_{eff}$, by a factor of 3 or more.
- Assuming central values of m_t and M_W do not change, (at ILC) a deviation between the SM prediction and the direct measurements would be prominently visible.

Confrontation of measurement and prediction

- Breakdown of individual contributions to errors of M_W and $sin^2 \theta^{I}_{eff}$
- Parametric uncertainties (not the full fit).

				Uncertainty source $[\pm 1\sigma]$							
Parameter	Scenario	$\delta_{ m meas}$	$\delta_{ m tot\ pred}$	$\delta_{ m tot~exp}$	δM_Z	δm_t	$\delta\Deltalpha_{ m had}$	$\delta lpha_{S}$	$\delta_{ m theo}$		
	Present	15	7.8	6.6	2.6	5.5	1.8	2.0	4.0		
M_W [MeV]	LHC	8	5.1	5.0	2.6	3.6	0.9	2.0	1.0		
	ILC	5	3.1	2.9	2.6	0.6	0.9	0.6	1.0		
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	Present	16	6.8	4.9	1.5	2.9	3.5	1.0	4.7		
	LHC	16	3.3	3.1	1.5	1.9	1.6	1.0	1.0		
	ILC	1.3	2.5	2.3	1.5	0.3	1.6	0.3	1.0		
^(o) In units of 1	0^{-5} .										

- M_W and $sin^2 \theta^{I}_{eff}$ are sensitive probes of new physics! For all scenarios.
- At ILC/GigaZ, precision of M_z will become important again!

Max Baak (CERN)

- For STU parameters, improvement of factor of >3 is possible at ILC.
- Again, at ILC a deviation between the SM predictions and direct measurements would be prominently visible.
- Competitive results between EW fit and Higgs coupling measurements!
 - (At level of 1%.)

Conclusions 1/2

- New: full set 2-loop calculations and of theoretical uncertainties.
 - Small impact on EW fit.
- Including M_H measurement, precise predictions of EW observables at loop level are possible for the first time.
- Overall consistency of the SM fit is very good.
 - M_H consistent at 1.3 σ with indirect prediction from EW fit.
 - p-Value of global electroweak fit of SM: 21 ± 2 % (pseudo-experiments)

Conclusions 2/2

- Paradigm shift for EW fit: from Higgs mass prediction to consistency tests of the Standard Model.
- Knowledge of M_H dramatically improves SM prediction of key observables
 - M_W (28 \rightarrow 8 MeV), sin² θ^{I}_{eff} (2.3x10⁻⁵ \rightarrow 0.7x10⁻⁵), m_t (6.2 \rightarrow 2.4 GeV)
 - Only surpassed sofar by top mass measurement.

- Improved accuracies set benchmark for new direct measurements!
 - M_W , sin² θ^{I}_{eff} (and Higgs couplings) sensitive probes of new physics.

Outlook

- Next step: further exploration of Higgs couplings in the EW fit.
 - (Several groups have already worked on this. Gfitter as well.)
- Prospects: including new data electroweak fits remain very interesting in coming years!
 - In particular ILC provides excellent New Physics sensitivity.
- Latest results always available at: <u>http://cern.ch/Gfitter</u>
 - Results of this presentation: EPJC 72, 2205 (2012)
 - LHC-300 and ILC/GigaZ prospects paper to appear in one or two weeks !

Thanks!

A Generic Fitter Project for HEP Model Testing

Backup

Prediction for $\alpha_s(M_Z)$ **from Z** \rightarrow **hadrons**

- Scan of $\Delta \chi^2$ versus α_s $\Delta \chi^{2}$ G fitter SM fit 4.5 Also shown: SM fit with SM fit with minimal input and R_{i}^{0} and σ_{had}^{0} 2σ 4 minimal inputs: 🛏 α_s from τ decays at 3NLO [Eur.Phys.J.C56,305 (2008)] 3.5 M_Z , G_F , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_{H} , and fermion masses 3 2.5 Determination of α_s 2 at N³LO. 1.5 Most sensitive through • 1σ total hadronic 0.5 cross-section σ^{0}_{had} and partial leptonic width R⁰ 0 ----0.112 0.12 0.114 0.116 0.118 0.122 0.124 0.126 α (M_) $\alpha_s(M_Z^2) = 0.1196 \pm 0.0028_{\text{exp}} \pm 0.0011_{\text{theo}} = 0.1196 \pm 0.0030_{\text{tot}}$
 - Theory uncertainty at per-mille level (obtained by scale variation of Γ_{had}).
- In good agreement with value from τ decays, also at N³LO, and with WA.
 - (Improvements in precision only expected with ILC/GigaZ. See later.)

Input correlation coefficients between Z pole measurements

	M_Z	Γ_Z	$\sigma_{ m had}^0$	R^0_ℓ	$A^{0,\ell}_{\scriptscriptstyle \mathrm{FB}}$		$A^{0,c}_{\scriptscriptstyle\mathrm{FB}}$	$A^{0,b}_{\scriptscriptstyle\mathrm{FB}}$	A_c	A_b	R_c^0	R_b^0
M_Z	1	-0.02	-0.05	0.03	0.06	$A^{0,c}_{\scriptscriptstyle \mathrm{FB}}$	1	0.15	0.04	-0.02	-0.06	0.07
Γ_Z		1	-0.30	0.00	0.00	$A^{0,b}_{\scriptscriptstyle \mathrm{FB}}$		1	0.01	0.06	0.04	-0.10
$\sigma_{ m had}^0$			1	0.18	0.01	A_c			1	0.11	-0.06	0.04
R^0_ℓ				1	-0.06	A_b				1	0.04	-0.08
$A^{0,\ell}_{\scriptscriptstyle\mathrm{FB}}$					1	R_c^0					1	-0.18

Table 2: Correlation matrices for observables determined by the Z lineshape fit (left), and by heavy flavour analyses at the Z pole (right) [56].

Radiator Functions

- Partial widths are defined inclusively: contain both QCD and QED contributions.
- Corrections expressed as so-called radiator functions R_{A,f} and R_{V,f}

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(|g_{A,f}|^2 R_{A,f} + |g_{V,f}|^2 R_{V,f} \right)^2$$

- High sensitivity to the strong coupling α_s
- Recently, full four-loop calculation of QCD Adler function became available (N³LO)
- Much-reduced scale dependence!
- Theoretical uncertainty of ~0.15 MeV, compared with experimental uncertainty of 2.0 MeV.

[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)][P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

Calculation of M_w

- Full EW one- and two-loop calculation of fermionic and bosonic contributions.
- One- and two-loop QCD corrections and leading terms of higher order corrections.
- Results for Δr include terms of order $O(\alpha)$, $O(\alpha\alpha_s)$, $O(\alpha\alpha_s^2)$, $O(\alpha^2_{ferm})$, $O(\alpha_{bos}^2)$, $O(\alpha_{as}^2\alpha_{s}m_{t}^4)$, $O(\alpha_{m_t^6}^3)$
- Uncertainty estimate:
 - Missing terms of order $O(\alpha^2 \alpha_s)$: about 3 MeV (from $O(\alpha^2 \alpha_s m_t^4))$
 - Electroweak three-loop correction $O(\alpha^3)$: < 2 MeV
 - Three-loop QCD corrections **Ο(α_s³):** < 2 MeV
- Total: δM_w ≈ 4 MeV

[M Awramik et al., Phys. Rev. D69, 053006 (2004)] [M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]

Calculation of $sin^2(\theta_{eff}^I)$

Effective mixing angle:

$$\sin^2 heta_{
m eff}^{
m lept} = \left(1 - M_{
m W}^2/M_{
m Z}^2
ight)\left(1 + \Delta\kappa
ight)$$

- Two-loop EW and QCD correction to Δκ known, leading terms of higher order QCD corrections.
- Fermionic two-loop correction about 10⁻³, whereas bosonic one 10⁻⁵.
- Uncertainty estimate obtained with the different methods, geometric progression, leading to total of: $\delta \sin^2(\theta^{I}_{eff}) = 4.7 \times 10^{-5}$

0.2325

0.232

0.2315

0.231

0.2305

0.23

0.2295

[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)]

[M Awramik et al., JHEP 11, 048 (2006)]

Uncertainty in Top mass definition

- Difficult to define a pole mass for heavy, unstable and colored particle.
 - Single top decays before hadronizing. To have colorless final states, additional quarks needed.
 - Non-perturb. color-reconnection effects in fragmentation → biases in simulation.
 - 'Renormalon' ambiguity in top mass definition.
 - For pole mass, not for MS-bar scheme.
 - Impact of finite top width effects.
- Result: m_t^{exp} ≠ m_t^{pole}, and event-dependent.
- The top mass extracted in hadron collisions is not well defined below a precision of $O(\Gamma_t) \sim 1 \text{ GeV}$
- Hard to estimate additional theo. uncertainties. With 0.5 GeV on m_t:
 - $M_{H} = 90^{+34}_{-21}$ GeV, $M_{W} = 80.359 \pm 0.013$ GeV, $\sin^2\theta_{eff} = 0.23148 \pm 0.00010$.
 - \rightarrow Sofar only small deterioration in precision.

Moriond 2011: Prediction for Higgs mass

- LEP + Tevatron (Fall 2010) :
 - CL_{s+b}^{2s} central value $\pm 1\sigma$: $M_{H} = 120.2_{-5.2}^{+17.9}$ GeV
 - 2 σ interval:
 - $-2\ln Q: [115,152] \text{ GeV}$ $CL_{s+b}^{2-sided}: [114,155] \text{ GeV}$
- LEP + Tevatron (Moriond 2011) :
 - CL_{s+b}^{2s} central value $\pm 1\sigma$: $M_{H} = 120.2_{-4.7}^{+12.3}$ GeV
 - 2 σ interval:

 $-2\ln Q: [115,138] \text{ GeV} \\ CL_{s+b}^{2-sided}: [114,149] \cup [152,155] \text{ GeV}$

- Fit with LEP + Tevatron + LHC (H→WW) searches (Moriond 2011) :
- Central value unchanged
- 2σ interval:

 $-2\ln Q: [115,137] \text{ GeV}$ $CL_{s+b}^{2-sided}: [114,14?] \text{ GeV}$

Global Fit of electroweak SM and beyond

 Low energy observables with interesting precision will soon become available.

The ElectroWeak fit of Standard Model

Uncertainty estimates used:

	Experimental input $[\pm 1\sigma]$					
Parameter	Present	LHC	$\mathrm{ILC}/\mathrm{GigaZ}$			
M_H [GeV]	0.4	< 0.1	< 0.1			
M_W [MeV]	15	8	5			
M_Z [MeV]	2.1	2.1	2.1			
$m_t [{ m GeV}]$	0.9	0.6	0.1			
$\sin^2 \theta_{\rm eff}^{\ell} \ [\cdot 10^{-5}]$	16	16	1.3			
$\Delta \alpha_{\rm had}^5 M_Z^2 ~[\cdot 10^{-5}]$	10	4.7	4.7			
$R_l^0 \ [\cdot 10^{-3}]$	25	25	4			
$\alpha_s(M_Z^2) \ [\cdot 10^{-4}]$	_	—	—			

- ILC prospects from: ILC TDR (Vol-2).
- Theoretical uncertainty estimates from recent Snowmass report
- Central values of input measurements adjusted to M_H = 126 GeV.

Summary of indirect predictions

	Exper	imental	input $[\pm 1\sigma]$	Indirect determination $[\pm 1\sigma_{exp} \pm 1\sigma_{theo}]$			
Parameter	Present LHC ILC/GigaZ		Present	LHC	ILC/GigaZ		
M_H [GeV]	0.4	< 0.1	< 0.1	$^{+31}_{-26}$ $^{+10}_{-8}$	$^{+20.3}_{-18.1}$ $^{+2.3}_{-1.9}$	$+6.9 +2.5 \\ -6.6 -2.3$	
$M_W~[{ m MeV}]$	15	8	5	± 6.0 ± 5.0	± 5.2 ± 1.1	± 1.9 ± 1.3	
$M_Z~[{ m MeV}]$	2.1	2.1	2.1	± 11.4 ± 3.7	± 7.0 ± 0.8	± 2.6 ± 1.0	
m_t [GeV]	0.9	0.6	0.1	$\pm 2.4\ \pm 0.6$	± 1.5 ± 0.2	± 0.7 ± 0.2	
$\sin^2 \theta_{ m eff}^{\ell} \left[\cdot 10^{-5} \right]$	16	16	1.3	$\pm 4.5 \pm 4.9$	$\pm 2.8\ \pm 1.0$	$\pm 2.1 \pm 1.0$	
$\Delta lpha_{ m had}^5 M_Z^2 ~[\cdot 10^{-5}]$	10	4.7	4.7	±41.7 ±13.4	± 35.6 ± 3.2	± 5.6 ± 3.0	
$R_{l}^{0} \left[\cdot 10^{-3} ight]$	25	25	4	-	_	_	
$\alpha_{\scriptscriptstyle S}(M_Z^2)~[\cdot 10^{-4}]$	_	_	_	± 39.9 ± 10.3	± 38.9 ± 6.6	$\pm 6.4 \ \pm 6.9$	
$\delta_{ m th} M_W$ [MeV]	4	1	1	-	_	_	
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} \left[\cdot 10^{-5} \right]$	4.7	1	1	-	—		
$S _{U=0}$	_	_	_	0.094	0.086	0.017	
$T _{U=0}$	—	_	—	0.083	0.064	0.022	
$\kappa_V [\%] (\lambda \!=\! 3 \mathrm{TeV})$	5	3	1	2	2	1	

• M_W and $\sin^2\theta_{eff}^{I}$ are (and will be) sensitive probes of new physics!

Max Baak (CERN)

• From: arXiv:1308.6176

Table 9: Selected set of precision measurements at TLEP. The statistical errors have been determined with (i) a one-year scan of the Z resonance with 50% data at the peak, leading to 710^{11} Z visible decays, with resonant depolarization of single bunches for energy calibration at O(20min) intervals;(ii) one year at the Z peak with 40% longitudinally-polarized beams and a luminosity reduced to 20% of the nominal luminosity; (iii) a one-year scan of the WW threshold (around 161 GeV), with resonant depolarization of single bunches for energy calibration at O(20min) intervals; and (iv) a five-years scan of the t \bar{t} threshold (around 346 GeV). The systematic uncertainties indicated below are only a "first look" estimate and will be revisited in the course of the design study.

Quantity	Physics	Present		Statistical	Systematic	Key	Challenge
		precision		uncertainty	uncertainty		
$m_{\rm Z}~({\rm keV})$	Input	91187500 ± 2100	Z Line shape scan	5 keV	< 100 keV	E_{beam} calibration	QED corrections
$\Gamma_{\rm Z}$ (keV)	$\Delta \rho (\text{not} \Delta \alpha_{\text{had}})$	2495200 ± 2300	Z Line shape scan	8 keV	< 100 keV	E_{beam} calibration	QED corrections
R_{ℓ}	α_{s}, δ_{b}	20.767 ± 0.025	Z Peak	0.0001	< 0.001	Statistics	QED corrections
N_{ν}	PMNS Unitarity,	2.984 ± 0.008	Z Peak	0.00008	< 0.004		Bhabh a scat
N_{ν}	and sterile v's	2.92 ± 0.05	$Z\gamma$, 161 GeV	0.001	< 0.001	Statistics	
$R_{\rm b}$	δ _b	0.21629 ± 0.00066	Z Peak	0.000003	< 0.000060	Statistics, small IP	Hemisphere correlations
ALR	$\Delta_{\rho}, \epsilon_3, \Delta \alpha_{had}$	0.1514 ± 0.0022	Z peak, polarized	0.000015	< 0.000015	4 bunch scheme, 2ex p	Design experiment
m_W (MeV)	$\Delta \rho$, q_1 , q_2 , $\Delta \alpha_{had}$	80385 ± 15	WW thresholdscan	0.3 MeV	< 0.5 MeV	Ebsam, Statistics	QED corrections
$m_{\rm top}~({\rm MeV})$	Input	173200 ± 900	tt threshold scan	10 MeV	< 10 MeV	Statistics	Theory interpretation

Experimental inputs – Predicted uncertainties

	Experimental input $[\pm 1\sigma]$							
Parameter	Present	LHC	IL	C/Gig	aZ	TLEP		
M_H [GeV]	0.4 🖨	>< 0.1		< 0.1		< 0.1		
M_W [MeV]	15 –	8	⇒	5	⇒	1.3		
M_Z [MeV]	2.1	2.1		2.1	⇒	0.1		
$m_t \; [\text{GeV}]$	0.9	0.6		0.1		0.08		
Γ_Z [MeV]	2.3	2.3	⇒	0.8	⇒	0.1		
$\sin^2 \theta_{\rm eff}^{\ell} \ [\cdot 10^{-5}]$	16	16	⇒	1.3	⇒	0.3		
$R_l^0 \ [\cdot 10^{-3}]$	25	25	⇒	4	⇒	1.3		
$\Delta \alpha_{\rm had}^5(M_Z^2) \ [\cdot 10^{-5}]$	10 🗖	4.7		4.7		4.7		
$\alpha_{s}(M_{Z}^{2}) \ [\cdot 10^{-4}]$	—	—		_		—		
$\delta_{\rm th} M_W$ [MeV]	4 🗖	> 1		1		1		
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} \left[\cdot 10^{-5} \right]$	4.7	> 1		1		1		

TLEP scenario:

- Preliminary estimates
- Clearly not the same level of understanding as LHC or ILC.
- Uncertainties may turn out completely different.
 - From arXiv:1308.6176,
 - and Snowmass report.
 - Of these two, we take most conservative estimate.
- Note: top mass dominated by theoretical uncertainty.
- Higher statistics

From beam energy precision: improved M_Z and Γ_Z

Prospects of the EW fit: Higgs mass (126 GeV)

- Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.
- Indirect prediction M_H dominated by theory uncertainties.
 - ILC with (without) theory errors:
 - ILC with present-day theory uncertainties:
 - TLEP with (without) theory errors:

 $M_{\rm H} = 126^{+10}_{-9} (\pm 7) \, {\rm GeV}$

$$M_{\rm H} = 126^{+20}_{-17} \,\,{\rm GeV}$$

Prospects of the EW fit: Higgs mass (94 GeV)

- If EWP-data central values are unchanged, i.e. they keep favoring low value of Higgs mass (94 GeV), >5σ discrepancy with measured Higgs mass.
 - In both ILC and TLEP scenarios.

Prospects of the EW fit: W mass and $sin^2\theta^{I}_{eff}$

Max Baak (CERN)

The ElectroWeak fit of Standard Model and Beyond

Prospects of the EW fit: W mass versus $sin^2\theta^{I}_{eff}$

- Huge reduction of uncertainty on indirect determinations of m_W, and sin²θ^I_{eff}, by a factor of ≥3 (≥4-5) at ILC (TLEP).
- Assuming central values of M_W and sin²θ^I_{eff} do not change, a deviation between the SM prediction and the direct measurements would be prominently visible, at both ILC and TLEP.
 - But also in LHC-300 scenario, from improved theory uncertainties.

Max Baak (CERN)

Confrontation of measurement and prediction

- Breakdown of individual contributions to errors of M_W and $\sin^2\theta_{eff}^{I}$
- Parametric uncertainties (not the full fit).

error due to uncertainty $(\pm 1\sigma)$

Parameter	Scenario	$\delta_{ m meas}$	$\delta_{ m pred}$	δ_{exp}	δM_Z	δm_t	$\delta\Delta\alpha_{ m had}$	$\delta lpha_{S}$	$\delta_{ m theo}$
	Present	15	10.4	6.4	2.6	5.2	1.8	1.7	4.0
M_W [MeV]	LHC	8	5.8	4.8	2.6	3.6	0.9	1.7	1.0
	ILC	5	3.8	2.8	2.6	0.6	0.9	0.4	1.0
	Future	1.3	2.0	1.0	0.1	0.5	0.9	0.3	1.0
	Present	16	9.5	4.8	1.5	2.8	3.5	1.0	4.7
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	LHC	16	4.1	3.1	1.5	1.9	1.6	1.0	1.0
	ILC	1.3	3.2	2.2	1.5	0.3	1.6	0.2	1.0
	Future	0.3	2.7	1.7	0.1	0.3	1.6	0.2	1.0
(0)In units of 1	0-5								

m units of 10

- M_{W} and sin² θ^{I}_{eff} are sensitive probes of new physics! In all scenarios.
- At ILC/GigaZ, precision of M_7 will become important again.
- At TLEP ('Future'), limited by external inputs: theory errors and $\Delta \alpha_{had}$

Max Baak (CERN)
Prospects of the EW fit: W versus top mass

 Huge reduction of uncertainty on indirect determinations of m_t and m_W by a factor of ≥3 (≥5) at ILC (TLEP).

 Assuming central values of m_t and M_W do not change, a deviation between the SM prediction and the direct measurements would be prominently visible.

Max Baak (CERN)

Prospects of EW fit: S versus T

- For STU parameters, improvement of factor of ≥4 (≥10) is possible at ILC (TLEP).
- Again, at both ILC and TLEP a deviation between the SM predictions and direct measurements would be prominently visible.

Max Baak (CERN)

Predicted uncertainties from EW fit

	error due to uncertainty $(\pm 1\sigma)$									
Parameter	$\delta_{ m meas}$	$\delta_{ m fit}^{ m tot}$	$\delta_{\rm fit}^{\rm exp}$	$\delta_{\mathrm{fit}}^{\mathrm{theo}}$	δM_W	δM_Z	δm_t	$\delta \sin^2\!\theta^\ell_{\rm eff}{}^{\scriptscriptstyle(\circ)}$	$\delta\Delta\alpha_{\rm had}{}^{(\circ)}$	$\delta lpha_{S}{}^{(riangle)}$
					ILC pros	spects				
M_H [GeV]	< 0.1	$^{+9.6}_{-9.0}$	$^{+6.9}_{-6.6}$	$^{+2.7}_{-2.4}$	$^{+4.2}_{-0.8}$	$^{+4.4}_{-4.0}$	$^{+0.9}_{-0.8}$	$^{+3.1}_{-3.3}$	$^{+4.2}_{-4.1}$	$^{+0.6}_{-0.6}$
M_W [MeV]	5	3.6	1.9	1.7	_	1.7	0.3	1.2	0.7	0.2
$M_Z~[{ m MeV}]$	2.1	3.7	2.6	1.1	2.4	_	0.5	1.3	1.9	0.3
$m_t [{ m GeV}]$	0.1	1.0	0.7	$^{+0.3}_{-0.2}$	$^{+0.5}_{-0.6}$	0.5	_	$^{+0.3}_{-0.2}$	0.4	_
$\sin^2 \theta_{ m eff}^{\ell}$ (°)	1.3	3.2	2.0	1.2	1.7	1.2	0.2	_	1.5	0.1
$\Delta \alpha_{\rm had}$ (°)	4.7	8.6	5.7	2.9	2.5	4.2	0.8	3.9	_	0.5
				I	Tuture pro	$\operatorname{ospects}$				
M_H [GeV]	< 0.1	5.3	3.3	2.0	3.0	0.3	1.0	$^{+0.0}_{-1.2}$	3.2	0.6
M_W [MeV]	1.3	1.9	0.4	1.5	_	0.1	0.3	0.2	0.1	0.1
$M_Z~[{ m MeV}]$	0.1	1.5	1.0	0.5	1.0	_	0.3		0.9	0.4
$m_t [{ m GeV}]$	0.08	0.38	0.24	0.14	0.24	0.03	_	0.01	0.22	0.02
$\sin^2 \theta_{ m eff}^{\ell}$ (°)	0.3	$^{+2.8}_{-2.4}$	1.4	$^{+1.5}_{-1.1}$	1.2		0.1	_	1.3	0.5
$\Delta \alpha_{\rm had}$ (°)	4.7	0.4	0.1	0.3			0.1	0.1	_	

 $^{(\circ)}$ In units of 10^{-5} . $^{(\bigtriangleup)}$ In units of 10^{-4}

- Breakdown of uncertainties derived from EW fit. (Note: *correlated* errors.)
- Compared to parametric breakdown: reduced experimental, but increased theory errors. Slightly smaller total errors.

Max Baak (CERN)