Z' searches: prospects for LHC Phase 2

L. Thomas

IIHE ULB-VUB

June 2nd, 2014

Outline

Introduction: Searches for heavy resonances at the LHC

- Motivations for new physics
- The CMS detector
- Current results
- LHC program for the next 20 years
- Prospects

2 Present work

- Kinematics of dielectron resonances
- Studied properties
- Event selection
- Spin Measurement
- A_{FB} Measurement
- Production modes measurement $(gg-q\bar{q} \text{ fractions})$

3 Conclusions

Introduction: Searches for heavy resonances at the LHC

- Motivations for new physics
- The CMS detector
- Current results
- LHC program for the next 20 years
- Prospects

2 Present work

- Kinematics of dielectron resonances
- Studied properties
- Event selection
- Spin Measurement
- A_{FB} Measurement
- Production modes measurement $(gg-q\bar{q} \text{ fractions})$

3 Conclusions

Introduction

- ullet Search for narrow heavy (\geq 1 TeV) resonances decaying into a dielectron pair.
- Generic search also motivated by several theories beyond the Standard Model : Grand Unified Theories (Z'), Large Extra Dimensions (RS gravitons),...
- Main background : Drell-Yan process. Irreducible, interfers with the signal.
- Signature : new peak in the dilepton mass spectrum.

Should we still believe in new physics at the LHC?

- Searches for new physics (i.e. beyond Standard Model) started several decades ago.
- Up to now, despite many efforts, particle colliders didn't find any hint of it...
- The discovery of the scalar boson is an impressive achievement but (so far) doesn't show any deviation from the Standard Model predictions.
- Many BSM theories (e.g. SUSY) are quite tuned:

"It is very **natural** that we haven't seen it yet but there's a **strong motivation** that it might be discovered soon..."

All this is quite depressing.

The only source of hope: loop corrections to the scalar boson.

$$\Delta m_{H}^2 = m_{1-loop}^2 - m_{tree}^2 = -rac{|\lambda_t|^2}{8\pi^2}\Lambda_{c\,utoff}^2 + ...$$
 (top quarks)

ightarrow There should really be something at the TeV scale...

What? Only God Chuck Norris knows...

One of the simplest things to look at: new peak in the dilepton mass spectrum

L. Thomas (IIHE ULB-VUB)

June 2nd, 2014 5 / 37

Event selection

- Selection : 2 isolated high energy electrons.
- Key detectors : tracker, electromagnetic calorimeter.
- Challenge : control electron reconstruction, identification at very high E_T .

 $M_{ee} = 1776 \text{ GeV}/c^2$

Latest results presented at Moriond 2013.

- Full 2012 dataset analyzed.
- No signal observed.
- Current limits of Z' (\sqrt{s} =8 TeV, 20 fb⁻¹): M \gtrsim 2.7 TeV for Z'_{SSM} @ 95% CL (ee only)

LHC program for the next 20 years

Name	Period	\sqrt{s}	Peak uminosity	∫Ldt	bunch spacing	Pile up
Run 1	2011-2012	7-8 TeV	7.7 10 ³³ cm ⁻² s ⁻¹	25 fb ⁻¹	50 ns	20
Phase 0	2015-2017	13-14 TeV	1.6 10 ³³ cm ⁻² s ⁻¹	100 fb ⁻¹	25 ns	40
Phase 1	2019-2021	14 TeV	2 10 ³³ cm ⁻² s ⁻¹	300 fb ⁻¹	25 ns	50
Phase 2	2023->2030	14 TeV	5 10 ³³ cm ⁻² s ⁻¹	300 fb ⁻¹	25 ns	140

Prospects

Projections at 14 TeV:

	$\sqrt{s} = 8$ TeV, 20 fb ⁻¹	$\sqrt{s} = 14 \text{ TeV}$, 300 fb ⁻¹	$\sqrt{s} = 14$ TeV, 3000 fb ⁻¹
Lower limit on M _Z '	2.7 TeV (@95% CL)	5 TeV ($@5\sigma$)	6.2 TeV ($@5\sigma$)

- For limits settings, \sqrt{s} more important than integrated luminosity. Cross section of a 4 TeV Z' enhanced by a factor \approx 100 for $\sqrt{s} = 8 \rightarrow 14$ TeV
- Three events is enough to make a discovery.

A discovery in the first months of 2015 is possible !

• In such a case, one wants to characterize the observed signal. \rightarrow More events needed \rightarrow Here comes lumi.

L. Thomas (IIHE ULB-VUB)

Introduction: Searches for heavy resonances at the LHC

- Motivations for new physics
- The CMS detector
- Current results
- LHC program for the next 20 years
- Prospects

Present work

- Kinematics of dielectron resonances
- Studied properties
- Event selection
- Spin Measurement
- A_{FB} Measurement
- Production modes measurement $(gg-q\bar{q} \text{ fractions})$

3 Conclusions

Philosophy of the present study:

Assume we observe a new resonance at 3-4 TeV in 2015.

- What precision can we reach about its properties?
- Evolution of the uncertainty with lumi? i.e. Is it worth to collect 3000 fb⁻¹?
- Use techniques as model independent as possible as the nature of the signal is really unknown.

Practically:

- Take three benchmark models: Z'_{Ψ} , Z'_{SSM} , RS graviton, M = 3 and 4 TeV.
- Compare results for 100 fb $^{-1}$ at \sqrt{s} = 13 TeV, and 300/3000 fb $^{-1}$ at \sqrt{s} =14 TeV.

A 2 body decay provides mainly two observables in addition to the invariant mass:

• $\cos \theta$: angle between the negative lepton and one of the incoming parton (taken to be the quark for $q\bar{q}$ annihilation). Experimentally, approximated by:

$$\cos\theta_{CS_{meas}} = \frac{p_{z,\bar{l}\bar{l}}}{|p_{z,\bar{l}\bar{l}}|} 2 \frac{E_{l} \cdot p_{z,\bar{l}} - E_{\bar{l}} \cdot p_{z,l}}{M_{l\bar{l}} \sqrt{M_{l\bar{l}}^2 + P_{T,l\bar{l}}^2}}$$

• $y_{i\bar{i}}$: The dilepton rapidity:

$$y_{I\bar{I}} = \frac{1}{2} \ln \frac{E_{I\bar{I}} + p_{z,I\bar{I}}}{E_{I\bar{I}} - p_{z,I\bar{I}}}$$

Spin determination:

- Spin affects $\cos \theta_{CS}$ through even terms
- Odd terms responsible for A_{FB}
- Different shape for gg ad $q\bar{q}$ production modes for spin 2.
- No gg production for a colorless spin 1.

resonance spin and production mode	$\frac{d\sigma}{d \cos\theta cs }$
Spin 0 (gg or $q\bar{q}$ fusion)	$\propto 1$
Spin 1 (<i>q</i> ā fusion)	$\propto 1+\cos^2 heta$
Spin 2 (gg fusion)	$\propto 1-\cos^4 heta$
Spin 2 ($q\bar{q}$ fusion)	$\propto 1 - 3\cos^2 heta + 4\cos^4 heta$

Studied properties

Spin determination:

- Spin affects $\cos \theta_{CS}$ through even terms
- Odd terms responsible for A_{FB}
- Different shape for gg ad $q\bar{q}$ production modes for spin 2.
- No gg production for a colorless spin 1.

$$Z'_{\psi}$$
, M = 3 TeV/c²

Studied properties

Spin determination:

- Spin affects $\cos \theta_{CS}$ through even terms
- Odd terms responsible for A_{FB}
- Different shape for gg ad $q\bar{q}$ production modes for spin 2.
- No gg production for a colorless spin 1.

RS graviton (gg fusion), $M = 3 \text{ TeV/c}^2$

RS graviton (qq fusion), M = 3 TeV/c²

Forward backward asymmetry measurement A_{FB}

- $A_{FB} = \frac{\sigma_{\theta < \pi/2} \sigma_{\theta > \pi/2}}{\sigma_{\theta < \pi/2} + \sigma_{\theta > \pi/2}}$
- Affects $\cos \theta_{CS}$ through odd terms.
- No A_{FB} for spin 0.

Figure: Left: A_{FB} vs mass for $d\bar{d} \rightarrow e\bar{e}$ for the Standard Model (solid line) and various 500 GeV Z' models (dashed lines). Right: $\cos \theta_{CS}$ for Drell-Yan events and two Z' models.

L. Thomas (IIHE ULB-VUB) Z' searches: prospects for LHC Phase 2 June

Production mode fractions

- gg ad $q\bar{q}$ production modes possible for a spin 0/2.
- $q\bar{q}$ only for a colorless spin 1.
- Production mode affects the rapidity distribution.

- 2 high energy electrons ($E_T > 35$ GeV)
- For the A_{FB} measurement only: opposite charge requirement (93% efficient for M=3 TeV).

 $m Acc imes Eff = rac{
m Selected \ events \ with | M_{reco} - M_{res}| / M_{gen} < 10\%}{
m Nb \ of \ generated \ events}$

Model, mass	XS (pb)	Acc $ imes$ Eff.	Evts 100 fb ⁻¹	Evts 100 fb $^{-1}$ (Opp sign)
RS Grav (c=0.1), M=3 TeV	6.1e-04 ± 1.3e-05	0.644	39	37
RS Grav (c=0.1), M=4 TeV	5.5e-05 ± 1.2e-06	0.637	4	3
<i>Ζ'_{SSM}</i> M=3 TeV	1.7e-03 \pm 3.5e-05	0.495	84	78
Z ⁷ SSM M=4 TeV	2.6e-04 \pm 4.7e-06	0.372	10	9
Z_W^7 M = 3 TeV	4 .5e-04±1 .0e-05	0.630	28	26
Z_{W}^{γ} M=4 TeV	5 1e-05 \pm 1 1e-06	0.596	3	3
DÝ M>3 TeV	1.2e-05 \pm 2.2e-07	0,666	1	1
DY M>4 TeV	1 2e-06 \pm 2 1e-08	0,673	0	0

- Low Acc. \times Eff. for Z_{SSM}' because of the cut $|M_{reco} - M_{res}|/M_{res} < 10\%$ - Background free region.

Two benchmarks considered here: Z'_{Ψ} , RS graviton (c=0.1).

- Same coupling to up and down quarks
- $A_{FB} = 0$ for both

Hypothesis test using a likelihood ratio. Alternative hypotheses:

- Spin 0 (100% $q\bar{q}$, 50% gg-50% $q\bar{q}$, 100% gg) built by reweighting the $|\cos\theta_{CS,th}|$ distribution of RS gravitons events.
- Spin 1 (100% $q\bar{q}$), using the Z'_{Ψ} distribution
- Spin 2 (100% $q\bar{q}$, 50% gg-50% $q\bar{q}$, 100% gg) built by reweighting the $|\cos\theta_{CS,th}|$ distribution of RS gravitons events.

N.B. Distributions used for the pseudo-experiments generation and for the likelihood calculation use disjoint events.

Spin Measurement: Procedure (1)

- Generate *n* events according to H1 (RS graviton or Z' Psi).
- Occupute $Q = \ln \frac{\mathcal{L}_0}{\mathcal{L}_1} = \ln \frac{\prod_{i=1}^n p_0(\vec{x}_i)}{\prod_{i=1}^n p_1(\vec{x}_i)}$ where $\vec{x}_i = |\cos \theta_{CS}|$ (1D) or $(|\cos \theta_{CS}|, |y_{ee}|)$ (2D).

Spin Measurement: Procedure (2)

Generate *n* events according to H1 (RS graviton or Z' Psi).

Observe Solution Compute $Q = \ln \frac{\mathcal{L}_0}{\mathcal{L}_1} = \ln \frac{\prod_{i=1}^n p_0(\vec{x}_i)}{\prod_{i=1}^n p_1(\vec{x}_i)}$ where $\vec{x}_i = |\cos \theta_{CS}|$ (1D) or $(|\cos \theta_{CS}|, |y_{ee}|)$ (2D).

2D

Spin Measurement: Procedure (3)

Generate *n* events according to H1 (RS graviton or Z' Psi).

Compute
$$Q = \ln \frac{\mathcal{L}_0}{\mathcal{L}_1} = \ln \frac{\prod_{i=1}^n p_0(\vec{x}_i)}{\prod_{i=1}^n P_1(\vec{x}_i)}$$
 where $\vec{x}_i = |\cos \theta_{CS}|$ (1D) or $(|\cos \theta_{CS}|, |y_{ee}|)$ (2D).

- O the same for events generated according to H0 (alternative hypothesis).
- **②** Repeat step 1-3 >1 million times and plot Q for the two scenarios (H0 and H1).
- In the data H1 will be favoured compared to H0 by a confidence level CL_s given by: $CL_s = \frac{\int_{-\infty}^{Q_{obs}} q_1 dQ}{\int_{-\infty}^{Q_{obs}} q_0 dQ}$ CMS Simulation. $\sqrt{s} = 14$ TeV. 300 fb⁻¹

• For projections, take $Q_{obs} = Q_{mean}(H1 \ true)$.

Separation in σ obtained by: $\sqrt{2}$ InverseErf $(1 - CL_s)$

- 3000 fb⁻¹ allows one to exclude all wrong spin hypotheses for a 4 TeV Z'_{Ψ} at $> 2\sigma$.
- 3000 fb⁻¹ allows one to exclude all wrong spin hypotheses for a 3 TeV Z'_{Ψ} at $> 5\sigma$. Similar results for RS graviton.

L. Thomas (IIHE ULB-VUB) Z' searches: prospects for LHC Phase 2

• Slight improvement compared to the 1d method. \rightarrow Information better used. Similar results for RS graviton.

Spin measurement: Likelihood ratios 1D

L. Thomas (IIHE UL<u>B-VUB)</u>

Z' searches: prospects for LHC Phase 2

Spin measurement: Likelihood ratios 2D

CMS Simulation. √s = 14 TeV. 3000 fb⁻¹

A_{FB} measurement: Generalities (1)

- Only non zero for a spin 1 or 2 resonance. (also 0 for spin 2 gravitons)
- Here focusing on spin 1 particle.
- Needs to distinguish the electron from the positron
- The $\cos\theta$ distribution for a spin 1 is $\propto 1 + \cos^2\theta + \frac{8}{3}A_{FB}\cos\theta$ (with $A_{FB} \in [-0.75, 0.75]$)
- Experimental $\cos \theta_{CS}$ distorted by ambiguity in quark direction determination.

A_{FB} measurement: Generalities (2)

- Only non zero for a spin 1 or 2 resonance. (also 0 for spin 2 gravitons)
- Here focusing on spin 1 particle.
- Needs to distinguish the electron from the positron
- The $\cos\theta$ distribution for a spin 1 is $\propto 1 + \cos^2\theta + \frac{8}{3}A_{FB}\cos\theta$ (with $A_{FB} \in [-0.75, 0.75]$)
- Experimental $\cos\theta_{CS}$ distorted by ambiguity in quark direction determination.

 $\implies |y_{ee}|$ can improve the measurement.

Quark direction better identified at high y_{ee}

L. Thomas (IIHE ULB-VUB)

Z' searches: prospects for LHC Phase 2

A_{FB} measurement: Procedure (1)

- Generate events according to the studied sample $(Z'_{\Psi} \text{ or } Z'_{SSM})$
- **2** Generate the $\cos \theta_{CS}$ distribution for a model with $A_{FB} = \pm 0.75$: $p_{A_{FB}=-1}(\cos \theta_{CS_{meas}}), p_{A_{FB}=+1}(\cos \theta_{CS_{meas}}),$
- Find κ such that:

$$\kappa * p_{A_{FB}=-1}(\cos\theta_{CS_{meas}}) + (1-\kappa) * p_{A_{FB}=+1}(\cos\theta_{CS_{meas}})$$

maximizes the likelihood.

A_{FB} measurement: Procedure (2)

- **O** Generate events according to the studied sample $(Z'_{\Psi} \text{ or } Z'_{SSM})$
- **2** Generate the $\cos \theta_{CS}$ distribution for a model with $A_{FB} = \pm 0.75$: $p_{A_{FB}=-1}(\cos \theta_{CS_{meas}}), p_{A_{FB}=+1}(\cos \theta_{CS_{meas}}),$
- \bigcirc Find κ such that:

$$\kappa * p_{A_{FB}=-1}(\cos\theta_{CS_{meas}}) + (1-\kappa) * p_{A_{FB}=+1}(\cos\theta_{CS_{meas}})$$

maximizes the likelihood.

•
$$A_{FB,meas} = \frac{3}{4} (2\kappa - 1)^{-1}$$

¹see backups

L. Thomas (IIHE ULB-VUB)

June 2nd, 2014 29 / 37

A_{FB} measurement: Procedure (3)

- **(**) Generate events according to the studied sample $(Z'_{\Psi} \text{ or } Z'_{SSM})$
- **2** Generate the $\cos \theta_{CS}$ distribution for a model with $A_{FB} = \pm 0.75$: $p_{A_{FB}=-1}(\cos \theta_{CS}_{meas}), p_{A_{FB}=+1}(\cos \theta_{CS}_{meas}),$
- \bigcirc Find κ such that:

$$\kappa * p_{A_{FB}=-1}(\cos\theta_{CS_{meas}}) + (1-\kappa) * p_{A_{FB}=+1}(\cos\theta_{CS_{meas}})$$

maximizes the likelihood.

- $A_{FB,meas} = \frac{3}{4} (2\kappa 1)$
- Repeat the procedure 1000 times to find the median and the ±1σ band.

Same technique is applied for the 2D distributions $(\cos \theta_{CS_{meas}}, |y_{ee}|)$.

L. Thomas (IIHE UL<u>B-VUB)</u>

Z' searches: prospects for LHC Phase 2

CMS simulation \sqrt{s} = 14 TeV, 3000 fb⁻¹

Predicted values:

	up quarks	down quarks	$\sqrt{s}=$ 13 TeV pp collisions
Z'_{Ψ}	0	0	0
Z'SSM	0.075	0.105	0.08
Drell-Yan M> 3 TeV	0.595	0.625	0.60

(Results for M=4 TeV in the backups)

Predicted values:

	up quarks	down quarks	$\sqrt{s}=13$ TeV pp collisions
Z'_{Ψ}	0	0	0
Z'ssm	0.075	0.105	0.08
Drell-Yan M> 3 TeV	0.595	0.625	0.60

2D method improves precision by ${\approx}10\%$.

(Results for M=4 TeV in the backups)

PE Distributions

CMS simulation vs = 14 TeV, 300 fb⁻¹

L. Thomas (IIHE ULB-VUB)

- Angular distribution and rapidity distributions affected by production mode for spin 2.
- Only rapidity distributions affected by production mode for spin 0.
- Those fractions are mass dependent (related to the pdfs).
- Here, we focused on the measurement of the RS graviton $qq/q\bar{q}$ fractions for M = 3, 4 TeV/c².
- \bullet Those fractions are also \sqrt{s} dependent. This was neglected in the 13 TeV \to 14 TeV extrapolation

Procedure:

• same than for A_{FB} measurement. This time, κ runs from 0 (pure gg fusion) to 1 (pure $q\bar{q}$ fusion)

1D

	100 fb ⁻¹ (13 TeV)	300 fb ⁻¹ (14 TeV)	3000 fb ⁻¹ (14 TeV)
R-S graviton (M = 3 TeV/ c^2) 1D	$0.35^{+0.33}_{-0.32}$	$0.36^{+0.16}_{-0.15}$	$0.36^{+0.05}_{-0.05}$
R-S graviton (M = 4 TeV/ c^2) 1D	$0.34^{+0.67}_{-0.34}$	$0.19^{+0.56}_{-0.19}$	$0.24^{+0.15}_{-0.16}$

2D

	100 fb ⁻¹ (13 TeV)	300 fb ⁻¹ (14 TeV)	3000 fb ⁻¹ (14 TeV)
R-S graviton (M = 3 TeV/ c^2) 2D	$0.37^{+0.31}_{-0.30}$	$0.36^{+0.13}_{-0.13}$	$0.37^{+0.05}_{-0.04}$
R-S graviton (M = 4 TeV/ c^2) 2D	$0.34^{+0.66}_{-0.34}$	$0.20^{+0.45}_{-0.20}$	$0.24^{+0.13}_{-0.15}$

Predicted values

RS graviton $M = 3$ TeV	0.38
RS graviton $M = 4$ TeV	0.25

N.B. The drop at $|\cos\theta_{CS}| \approx 0.6$ and $|y_{ee}| > 0.6$ in the right distribution is an acceptance effect (one of the electrons often in the gap).

- The increase of the LHC beams energy in 2015 will strongly enhance the production cross sections of TeV particles
- The dielectron decay mode is a clean channel where a discovery could me made in the first months of the data taking.
- In such a case, the measurement of three properties were investigated: spin, A_{FB} , production mode.
- The expected separation and measurement uncertainties were computed for different scenarios covering the mass range to which the next LHC runs will be sensitive.
- The performances of a 1d method (based on $\cos \theta_{CS}$) were compared to a 2d method (based on $\cos \theta_{CS}$, $|y_{ee}|$).
- The second method leads to slightly better results although being more model dependent.
- \bullet Precision strongly improved from 300 fb $^{-1} \rightarrow$ to 3000 fb $^{-1}$

Stay tuned !

Afb formula

$$\kappa * p_{A_{FB}=-1} + (1 - \kappa) * p_{A_{FB}=+1}$$

$$\propto \kappa (1 + \cos^2 \theta + 2 \cos \theta) + (1 - \kappa)(1 + \cos^2 \theta + 2 \cos \theta)$$

$$\propto 1 + \cos^2 \theta + (4\kappa - 2) \cos \theta$$

$$\propto 1 + \cos^2 \theta + \frac{8}{3} A_{FB} \cos \theta$$

Where the last equation comes from the fact that:

$$\begin{aligned} \sigma_F &= K \times \int_0^{2\pi} d\phi \int_0^1 d\cos\theta (1 + \cos^2\theta + \frac{8}{3}A_{FB}\cos\theta) = 2\pi K (\frac{4}{3} + \frac{4}{3}A_{FB}) \\ \sigma_B &= K \times \int_0^{2\pi} d\phi \int_{-1}^0 d\cos\theta (1 + \cos^2\theta + \frac{8}{3}A_{FB}\cos\theta) = 2\pi K (\frac{4}{3} - \frac{4}{3}A_{FB}) \\ \end{aligned}$$
Hence

 $\frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}} = A_{FB}$

Therefore:

 $A_{FB} = \frac{3}{4}(2\kappa - 1)$

Z'_{ψ} , M = 3 TeV/c²

June 2nd, 2014 39 / 37

RS graviton: $\cos \theta_{CS,th}$ distributions for gg vs $q\bar{q}$

RS graviton (gg fusion), M = 3 TeV/c²

Left: $\propto 1 - \cos^4 \theta_{CS,th}$ Right: $\propto 1 - 3\cos^2 \theta_{CS,th} + 4\cos^4 \theta_{CS,th}$

RS graviton (q \overline{q} fusion), M = 3 TeV/c²

 $\text{Fit to [0]}^{*}(1+[1]^{*}\text{cos}\theta_{\text{CS, th}}+[2]^{*}\text{cos}^{2}\theta_{\text{CS, th}}+[3]^{*}\text{cos}^{3}\theta_{\text{CS, th}}+[4]^{*}\text{cos}^{4}\theta_{\text{CS, th}})$

June 2nd, 2014 41 / 37

June 2nd, 2014 42/37

	100 fb ⁻¹ (13 TeV)	300 fb ⁻¹ (14 TeV)	3000 fb ⁻¹ (14 TeV)
RS grav (3 TeV) vs Spin 0 (gg), 1D	1.5	2.7	> 5
RS grav (3 TeV) vs Spin 0 (qqbar), 1D	1.4	2.5	> 5
RS grav (3 TeV) vs Spin 0 (qqbar-gg), 1D	1.5	2.7	> 5
RS grav (3 TeV) vs Spin 2 (gg), 1D	2.6	> 5	> 5
RS grav (3 TeV) vs Spin 2 (qqbar), 1D	1.3	2.4	> 5
RS grav (3 TeV) vs Spin 2 (qqbar-gg), 1D	0.6	1.2	3
RS grav (3 TeV) vs Spin 1 (qqbar), 1D	2.2	4.2	> 5
RS grav (4 TeV) vs Spin 0 (gg) 1D	0.7	1.2	3.3
RS grav (4 TeV) vs Spin 0 (qqbar), 1D	0.6	1.2	3.1
RS grav (4 TeV) vs Spin 0 (qqbar-gg), 1D	0.6	1.3	3.3
RS grav (4 TeV) vs Spin 2 (gg), 1D	1.2	2.3	> 5
RS grav (4 TeV) vs Spin 2 (qqbar), 1D	0.3	0.7	1.8
RS grav (4 TeV) vs Spin 2 (qqbar-gg), 1D	0.4	0.8	1.9
RS grav (4 TeV) vs Spin 1 (qqbar), 1D	0.8	1.6	4.3
Z Psi (3 TeV) vs Spin 0 (gg), 1D	1.3	2.3	> 5
Z Psi (3 TeV) vs Spin 0 (qqbar), 1D	1.3	2.3	> 5
Z Psi (3 TeV) vs Spin 0 (qqbar-gg) 1D	1.3	2.3	> 5
Z Psi (3 TeV) vs Spin 2 (gg) 1D	2.9	> 5	> 5
Z Psi (3 TeV) vs Spin 2 (qqbar) 1D	2.2	4.1	> 5
Z Psi (3 TeV) vs Spin 2 (qqbar-gg) 1D	1.9	3.5	> 5
Z Psi (4 TeV) vs Spin 0 (gg), 1D	0.4	0.8	2.1
Z Psi (4 TeV) vs Spin 0 (qqbar), 1D	0.5	1.0	2.6
Z Psi (4 TeV) vs Spin 0 (qqbar-gg), 1D	0.5	0.9	2.3
Z Psi (4 TeV) vs Spin 2 (gg), 1D	1.1	2.1	> 5
Z'Psi (4 TeV) vs Spin 2 (qqbar), 1D	0.8	1.6	4.5
Z Psi (4 TeV) vs Spin 2 (qqbar-gg), 1D	0.7	1.4	3.7

	100 fb ⁻¹ (13 TeV)	300 fb ⁻¹ (14 TeV)	3000 fb ⁻¹ (14 TeV)
RS grav (3 TeV) vs Spin 0 (gg), 2D	1.8	3.3	> 5
RS grav (3 TeV) vs Spin 0 (qqbar), 2D	1.6	2.9	> 5
RS grav (3 TeV) vs Spin 0 (qqbar-gg), 2D	1.4	2.6	> 5
RS grav (3 TeV) vs Spin 2 (gg), 2D	2.8	> 5	> 5
RS grav (3 TeV) vs Spin 2 (qqbar), 2D	1.5	2.7	> 5
RS grav (3 TeV) vs Spin 2 (qqbar-gg), 2D	0.7	1.3	3.3
RS grav (3 TeV) vs Spin 1 (qqbar), 2D	2.3	4.4	> 5
RS grav (4 TeV) vs Spin 0 (gg), 2D	0.8	1.4	3.8
RS grav (4 TeV) vs Spin 0 (qqbar), 2D	0.6	1.2	3.2
RS grav (4 TeV) vs Spin 0 (qqbar-gg), 2D	0.6	1.2	3.3
RS grav (4 TeV) vs Spin 2 (gg) 2D	1.2	2.3	> 5
RS grav (4 TeV) vs Spin 2 (qqbar), 2D	0.4	0.8	2
RS grav (4 TeV) vs Spin 2 (qqbar-gg), 2D	0.4	0.8	2.1
RS grav (4 TeV) vs Spin 1 (qqbar), 2D	0.8	1.6	4.4
Z Psi (3 TeV) vs Spin 0 (gg), 2D	1.9	3.5	> 5
Z Psi (3 TeV) vs Spin 0 (qqbar), 2D	1.3	2.3	> 5
Z Psi (3 TeV) vs Spin 0 (qqbar-gg) 2D	1.5	2.6	> 5
Z Psi (3 TeV) vs Spin 2 (gg) 2D	3.1	> 5	> 5
Z Psi (3 TeV) vs Spin 2 (qqbar) 2D	2.2	4.1	> 5
Z Psi (3 TeV) vs Spin 2 (qqbar-gg), 2D	2	3.8	> 5
Z Psi (4 TeV) vs Spin 0 (gg) 2D	0.7	1.3	3.4
Z Psi (4 TeV) vs Spin 0 (qqbar), 2D	0.5	1.0	2.6
Z Psi (4 TeV) vs Spin 0 (qqbar-gg), 2D	0.5	1.0	2.6
Z Psi (4 TeV) vs Spin 2 (gg) 2D	1.2	2.3	> 5
Z'Psi (4 TeV) vs Spin 2 (qqbar), 2D	0.8	1.6	4.4
Z Psi (4 TeV) vs Spin 2 (qqbar-gg), 2D	0.8	1.5	3.9

A_{FB} measurement: Tables

	100 fb ⁻¹ (13 TeV)	300 fb ⁻¹ (14 TeV)	3000 fb ⁻¹ (14 TeV)
Z'_{Ψ} (M = 3 TeV/c ²) 1D	$-0.01^{+0.39}_{-0.36}$	$0.00^{+0.18}_{-0.19}$	$-0.01^{+0.06}_{-0.06}$
Z'_{SSM} (M = 3 TeV/c ²) 1D	$0.07^{+0.21}_{-0.22}$	$0.07^{+0.11}_{-0.10}$	$0.07^{+0.04}_{-0.03}$
Z'_{Ψ} (M = 4 TeV/c ²) 1D	$0.02^{+0.73}_{-0.77}$	$-0.02^{+0.52}_{-0.52}$	$-0.01^{+0.17}_{-0.17}$
Z'_{SSM} (M = 4 TeV/c ²) 1D	$0.07^{+0.68}_{-0.63}$	$0.08^{+0.31}_{-0.32}$	$0.09^{+0.10}_{-0.10}$

Drell-Yan (1056 evts, $M > 3 \text{ TeV/c}^2$) 1D $0.59^{+0.06}_{-0.06}$

	100 fb^{-1} (13 TeV)	300 fb ⁻¹ (14 TeV)	3000 fb ⁻¹ (14 TeV)
Z'_{Ψ} (M = 3 TeV/c ²) 2D	$0.01^{+0.31}_{-0.35}$	$0.00^{+0.16}_{-0.16}$	$-0.01^{+0.05}_{-0.05}$
Z'_{SSM} (M = 3 TeV/c ²) 2D	$0.09^{+0.19}_{-0.20}$	$0.07^{+0.10}_{-0.10}$	$0.08^{+0.03}_{-0.03}$
Z'_{Ψ} (M = 4 TeV/c ²) 2D	$0.06^{+0.69}_{-0.81}$	$0.01^{+0.52}_{-0.49}$	$-0.00^{+0.15}_{-0.14}$
Z'_{SSM} (M = 4 TeV/c ²) 2D	$0.10^{+0.65}_{-0.62}$	$0.10^{+0.26}_{-0.30}$	$0.10^{+0.08}_{-0.09}$

Drell-Yan (1056 evts, $M > 3 \text{ TeV/c}^2$) 2D $0.62^{+0.04}_{-0.04}$

Predicted values

	up quarks	down quarks	$\sqrt{s}=$ 13 TeV pp collisions
Z'_{Ψ}	0	0	0
Z'	(no coupling)	-0.75	-0.75
Z'_{ssm}	0.075	0.105	0.08
Drell-Yan M> 3 TeV	0.595	0.625	0.60

Differences between median and predicted values (\approx 0.01) due to limited statistics used to build the pdf for generation and likelihood and to limited nb of PE generated (1000).

L. Thomas (IIHE ULB-VUB)

Collins-Soper frame

