

Natural SUSY and the 125.5 GeV Higgs

Moritz McGarrie

The MSSM

stops are typically the lightest

3-generations:

coloured superpartners

	Names squarks, quarks Q		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$
'S			$(\overline{u}_L \ \overline{d}_L)$	$(u_L \ d_L)$	$(3, 2, \frac{1}{6})$
	(×3 families)	ū	\overline{u}_R^*	u_R^{\dagger}	$(\overline{3}, 1, -\frac{2}{3})$
		\overline{d}	\bar{d}_R^*	d_R^\dagger	$(\overline{3}, 1, \frac{1}{3})$
	sleptons, leptons	L	$(\overline{\nu} \ \overline{e}_L)$	(νe_L)	$(1, 2, -\frac{1}{2})$
	(×3 families)	ē	\overline{e}_R^*	e_R^{\dagger}	(1 , 1 , 1)
	Higgs, higgsinos	H_u	$(H_{u}^{+} H_{u}^{0})$	$(\bar{H}^+_u \ \bar{H}^0_u)$	$(1, 2, +\frac{1}{2})$
		H_d	$(H^0_d \ H^d)$	$(\bar{H}^0_d \ \bar{H}^d)$	$(1, 2, -\frac{1}{2})$

Table 1.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0 fields are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.

Names	spin $1/2$	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$		
gluino, gluon	\overline{g}	g	(8,1,0)		
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$	(1,3,0)		
bino, B boson	\bar{B}^0	B^0	(1,1,0)		

Table 1.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

Ref: A supersymmetry primer Arxiv:9709356v6

The Higgs mass 125.5 GeV

The MSSM at one-loop

$$m_h^2 \simeq m_z^2 \cos^2(2\beta) + \frac{3}{(4\pi)^2} \frac{m_t^4}{v_{ew}^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} (1 - \frac{X_t^2}{12m_{\tilde{t}}^2}) \right]$$

$$126^2 = 91^2 + 81^2$$

stop mixing

 $X_t = A_t - \mu \cot \beta$

- Radiative corrections are same order as tree level piece
 - corrections run logarithmically in SUSY
- MSSM case implies either heavy stops or large X_t=A_t +....

$$\begin{split} & \begin{array}{c} \textbf{MSSM fine tuning: little} \\ \textbf{hierarchy problem} \\ \\ & m_z^2 = -2(m_{H_u}^2 + |\boldsymbol{\mu}|^2) + \dots \\ & \text{Light Higgsino} \\ \\ \textbf{For a natural cancellation these should be of the same order} \\ & \begin{array}{c} \textbf{Light stops} & & \\ & \boldsymbol{\delta}m_{H_u}^2 \sim -\frac{3y_t^2m_t^2}{4\pi^2} \operatorname{Log}\left(\frac{\Lambda}{m_t}\right) - \frac{3g^2}{8\pi^2}(m_W^2 + m_h^2)\operatorname{Log}(\frac{\Lambda}{m_W}) \\ & \\ & \begin{array}{c} \textbf{Light(ish) Gluino} \\ & \\ & \\ & \end{array} \\ & \begin{array}{c} \textbf{\delta}m_t^2 = \frac{8\alpha_s M_3^2}{3\pi} \operatorname{Log}\left(\frac{\Lambda}{M_3}\right) \\ \end{array} \end{split}$$

Natural SUSY checklist

The I26 GeV Higgs- NMSSM

or non decoupled D-terms e.g. (Aoife Bharucha, Andreas Goudelis & MM) 1310.4500

• Light stops (lighter than 1st & 2nd generation squarks)

Dynamical explanation? Soft masses cannot be the same

$$m_{h_0}^2 = m_z^2 \cos(2\beta) + \lambda^2 v_{ew}^2 \sin(2\beta)$$

$$\delta m_{H_u}^2 \sim -\frac{3y_t^2 m_{\tilde{t}}^2}{4\pi^2} \mathrm{Log}\left(\frac{\Lambda}{m_{\tilde{t}}}\right)$$

$$m^2_{(Q,U,D)_3} << m^2_{(Q,U,D)_{1,2}}$$

Connection to Flavour?
$$Y_u \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_t \end{pmatrix}$$
, $Y_d \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_b \end{pmatrix}$, $Y_e \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_\tau \end{pmatrix}$

No (excluded) FCNC's please!

• Realistic models of SUSY breaking? - ISS magnetic SQCD

A common problem!

Other approaches such as making At large, still need to explain why stops are lighter than 1st two generations? e.g. "Large At Without the Desert"-ArXiv: 1405:1038

Why?
$$m^2_{(Q,U,D)_3} << m^2_{(Q,U,D)_{1,2}}$$

Typically for all mSUGRA, GMSB, AMSB etc

$$m_{Q,U,D}^{2} \sim \Lambda^{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{} \sim 1.5 \text{ TeV exclusions}$$

first two generations degenerate to reduce FCNC's an SU(2)_F ?

(F.Bruemmer, A.Weiler & MM) 1312.0935 (S.Abel & MM) 1404.1318

Flavour Gauge Messengers

Extend gauge mediation to include a gauged flavour group
 Explain Yukawas and SUSY breaking
 Fields break SU(3)_F and SUSY at the same time

• Fully dynamical origin in terms of Meta-stable SUSY breaking

Gauge messengers=

Recipe:

- Gauge a group
 Higgs a group
- Fields that Higgs that group also break SUSY

Flavour? Non Abelian Froggat-Nielson mechanism SUSY breaking fields are Flavons!?

From GMSB From flavour gauge mess.

$$\delta m_{Q,U,D}^2 = -\frac{g_F^2}{16\pi^2} \left(\frac{F}{M}\right)^2 \begin{pmatrix} \frac{7}{6} & 0 & 0\\ 0 & \frac{7}{6} & 0\\ 0 & 0 & \frac{8}{3} \end{pmatrix}$$

Nett

 $m_{Q,U,D,\text{GMSB}}^2 \sim +\sum_i \frac{g_{SM,i}^4}{(16\pi^2)^2} \left(\frac{F}{M}\right)^2 \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right)$

$$m_{Q,U,D}^2 \sim \Lambda^2 \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\# \end{array} \right)$$

a tachyonic soft term for stops

From flavour gauge mess. From GMSB 2/100 $\delta m_{Q,U,D}^2 = -\frac{g_F^2}{16\pi^2} \left(\frac{F}{M}\right)^2 \left(\begin{array}{ccc} \frac{7}{6} & 0 & 0\\ 0 & \frac{7}{6} & 0\\ 0 & 0 & \frac{8}{2} \end{array}\right)$

$$m_{Q,U,D,\text{GMSB}}^2 \sim +\sum_i \frac{g_{SM,i}^4}{(16\pi^2)^2} \left(\frac{F}{M}\right)^2 \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right)$$

Stick the model into an <u>NMSSM</u> spectrum generator (SPheno)

Squarks and Gluino

Higgs

Figure 2. A plot [Left] of the squark and gluino masses for model 1 with the NMSSM. [Right] a plot of Higgs mass versus g_F for the same range. $\lambda = 0.8$, $\kappa = 0.8$, $v_s = 1000$, $m_{H_d}^2 = m_{H_u}^2 = 10^5$, $\Lambda = \Lambda_F = 2.3 \times 10^5, M = 10^7, \tan \beta = 1.5.$

Flavour changing neutral currents

 $K_{12}K_{11}^*$ — 1/5

— 1/3

 $\sim 57 eV$

4000

— 1

Model |: degenerate | st & 2nd

If extended to leptons, we expect Stau NLSP (Gravitino LSP)

For a natural cancellation these should be of the same order

$$m_z^2 = -2(m_{H_u}^2 + |\boldsymbol{\mu}|^2) + \dots$$

Massless stops at Mplanck, turn tachyonic at messenger scale, are turned positive by gluino

stops run positive
$$\delta m_{\tilde{t}}^2 = -\frac{8\alpha_s M_3^2}{3\pi} \log\left(\frac{\Lambda}{M_3}\right)$$

$$\int_{0}^{\delta m_{H_u}^2} \sim -\frac{3y_t^2 m_{\tilde{t}}^2}{4\pi^2} \log\left(\frac{\Lambda}{m_{\tilde{t}}}\right) \qquad (+) + (-) \sim 0$$
Reduces fine tuning on the Higgs

How to Gauge flavour?

 $SU(3)_F$ is anomaly free and $G_{SM} \times SU(3)_F$ mixed anomalies vanish!

We can gauge it... but we still need to Higgs SU(3)_F

It turns out that this model can embed into magnetic SQCD too!

Field	$SU(\tilde{N})_{mag}$	$SU(3)_L \times SU(3)_R \to SU(3)_F$
Φ	1	$(3,\overline{3})$
φ		$(\overline{3},1)$
$ ilde{arphi}$		(1,3)

$$W_{\rm mag} = h {\rm Tr} \varphi \Phi \tilde{\varphi} - \mu^2 {\rm Tr} \Phi.$$

The usual rank condition breaks $SU(3)_F \rightarrow SU(2)_F$

$$\mu_{ij} = \begin{pmatrix} \mu & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix} \text{ and } \varphi^T = \tilde{\varphi} = \begin{pmatrix} \mu \\ \mu \\ 0 \end{pmatrix} \qquad F_{\Phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & h\mu^2 \end{pmatrix} \text{ such that } V_{\min} = |h^2 \mu^4|.$$

"Dynamical metastable flavour gauge mediation"

$$\delta m_{Q,U,D}^2 = -\frac{g_F^2}{16\pi^2} |h^2 \mu^2| \begin{pmatrix} \frac{8}{9} & 0 & 0\\ 0 & \frac{8}{9} & 0\\ 0 & 0 & \frac{20}{9} \end{pmatrix} + \dots$$

Perhaps we can explain Yukawas too!

Couple these fields together

leads to...
$$W = \frac{\lambda_u}{\Lambda} H_u Q \Phi U + \frac{\lambda_d}{\Lambda} H_d Q \Phi D$$

$$\Phi = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \langle X \rangle \end{pmatrix} \quad \text{leads to} \quad Y_u = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & Y_t \end{pmatrix}$$

(S.Abel & MM) 1404.1318

Model 2									
Field	G_{SM}	$SU(3)_L \times SU(3)_R \to SU(3)_F$		Field	$SU(\tilde{N})_{\rm mag}$	$\boxed{SU(3)_L \times SU(3)_R \to SU(3)_F}$			
\hat{Q}^f	$(2, rac{1}{6}, 3)$	$(\overline{3},1)$		Φ	1	$(3,\overline{3})$			
\hat{L}^f	$(2,- frac{1}{2},1)$	$(\overline{3},1)$		φ		ank 2 $(\overline{3},1)$			
\hat{H}_d	$(2,- frac{1}{2},1)$	(1,1)		$\tilde{\varphi}$		(1 , 3)			
\hat{H}_u	$(2, rac{1}{2}, 1)$	(1,1)		,	~				
\hat{D}^f	$(1, rac{1}{3}, \overline{3})$	(1,3)		Field	$SU(N)_{\rm mag}$	$SU(3)_L \times SU(3)_R \to SU(3)_F$			
\hat{U}^f	$(1,-rac{2}{3},\overline{3})$	(1,3)		M	1	$(3,\overline{3})$			
\hat{E}^f	(1, 1, 1)	(1, 3)		ϕ		$(\overline{3},1)$			
$\hat{ u}^f$	(0, 1, 1)	(1, 3)		$ $ $ ilde{\phi}$		(1,3)			

$$\varphi^T = \tilde{\varphi} = \begin{pmatrix} 0 \\ \mu \\ \mu \end{pmatrix} \text{ and } \phi^T = \tilde{\phi} = \begin{pmatrix} 0 \\ 0 \\ \nu \end{pmatrix}$$

$$\frac{\phi}{\Lambda} \sim O(1) \quad \frac{\varphi}{\Lambda} \sim \epsilon \text{ leads to } Y_u \sim \begin{pmatrix} 0 & 0 & 0\\ 0 & \epsilon & \epsilon\\ 0 & \epsilon & 1 \end{pmatrix}$$

Non-Abelian Froggat-Nielson Many more model building avenues to explore further...

(S.Abel & MM) 1404.1318

"Large At Without the Desert"

A.Abdalgabar, A.Cornell, A.Deandrea, MM 1405:1038

$\mathbf{a_u} \approx \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$	0 0 0	$\begin{pmatrix} 0\\ 0\\ a_t \end{pmatrix}$,	$\mathbf{a_d} \approx$	$\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$	0 0 0	$egin{array}{c} 0 \ 0 \ a_b \end{array}$,	$\mathbf{a_e} \approx$	$\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$	0 0 0	$\begin{pmatrix} 0\\ 0\\ a_{\tau} \end{pmatrix}$,
--	-------------	---	---	------------------------	---	-------------	--	---	------------------------	---	-------------	--	---

At runs negative

IR typically ends up negative a few 100 GeV
Not sufficient to the get correct Higgs mass....
Question: Can we accelerate its running?

The Higgs mass 126 GeV

The MSSM at one-loop $m_h^2 \simeq m_z^2 \cos^2(2\beta) + \frac{3}{(4\pi)^2} \frac{m_t^4}{v_{ew}^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} (1 - \frac{X_t^2}{12m_{\tilde{t}}^2}) \right]$

$$126^2 = 91^2 + 81^2$$

Radiative corrections are same order as tree level piece

- corrections run logarithmically in SUSY
- MSSM case implies either heavy stops or large X_t=A_t +....

stop mixing

 $X_t = A_t - \mu \cot \beta$

In 5D you can get large At!

"Power law running"

An extra dimension of radius R. Additional Kaluza Klein modes enter RGEs @ Q> I/R

Large At: Independent of the details of SUSY breaking

Split families: Locate different generations in brane or bulk $m^2_{(Q,U,D)_3} << m^2_{(Q,U,D)_{1,2}}$

Power law running $\alpha^{-1}(Q) = \alpha^{-1}(m_z) - \frac{b}{2\pi}\log\frac{Q}{m_z} + \frac{\tilde{b}}{2\pi}\log\frac{Q}{m_{KK}} - \frac{\tilde{b}}{2\pi}(\frac{Q^d}{m_{KK}} - 1)c_d$

(T.Taylor, G.Veneziano) Phys. Lett. B212 (1988) (K.Dienes, E.Dudas T. Gherghetta) 9803466 (K.Dienes, E.Dudas, T. Gherghetta) 9806292

> "The finite power-law corrections to the Yukawa couplings have the right sign and magnitude to cancel the tree-level terms. This can help to explain the hierarchical structure of the fermion Yukawa couplings."

(A.Abdalagbar, A.Cornell, A.Deandrea, MM) 1405:1038

"Perhaps we can use this to accelerate the value of At?"

4+d dimensional MSSM

Always unify
 No proton decay
 Explains flavour
 Large At

Figure 1. Running of the inverse fine structure constants $\alpha^{-1}(E)$, for three different values of the compactification scales 10 TeV (top left panel), 10³ TeV (top right), 10⁵ TeV (bottom left) and 10¹² TeV (bottom right), with M_3 of 1.7 TeV, as a function of $\log(E/GeV)$.

Figure 2. Running of Yukawa couplings Y_i , for three different values of the compactification scales: 10 TeV (top left panel), 10³ TeV (top right), 10⁵ TeV (bottom left) and 10¹² TeV (bottom right), with $M_3[10^3]$ of 1.7 TeV, as a function of log(E/GeV).

Figure 3. Running of trilinear soft terms $A_i(3,3)(E)$, for three different values of the compactification scales 10 TeV (top left panel), 10^3 TeV (top right), 10^5 TeV (bottom left) and 10^{12} TeV (bottom right), with $M_3[10^3]$ of 1.7 TeV, as a function of log(E/GeV).

Larger gluino gives larger At

Moritz McGarrie

Thanks for listening!

Conclusions

- Traditional models are in bad shape
 Perhaps it is time to panic?
- Natural SUSY is motivated from bottom up
- These can have exciting top-down motivations too
 - It does mean sacrificing minimality!

Back up slides

Non decoupled D-terms (Aoife Bharucha, Andreas Goudelis & MM) 1310.4500

A quiver model: motivation

non decoupled D-terms: lifts the Higgs (sometimes substantially) Batra, Delgado, Kaplan, Tait 0309149

• extra adjoints of SU(2),SU(3): lifts the Higgs

More natural than NMSSM?

embeds into magnetic SQCD

Deconstructs an extra dimension

• "Split families": Batra, Kaplan, Tait, Delgado 0404251/0409073

$$m_h^2 \simeq m_z^2 \cos^2(2\beta) + \frac{3}{(4\pi)^2} \frac{m_t^4}{v_{ew}^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} (1 - \frac{X_t^2}{12m_{\tilde{t}}^2}) \right] \qquad \Delta = \left(\frac{g_A^2}{g_B^2}\right) \frac{2m_L^2}{m_v^2 + 2m_L^2}$$

<u>Related works:</u> Csaki, Erlich, Grojean,Kribs 0106044 Medina, Shah, Wagner 0904.1625 "GGM and Deconstruction"

M.M. 1009.0012 and 1101.5158

Auzzi, Giveon, Gudnason, Shacham 1009.1714 1011.1664

easyDiracGauginos

Abel, Goodsell

Bharucha, Goudelis, M.M. 1310.4500

$$\delta \mathcal{L} = -g_1^2 \Delta_1 (H_u^{\dagger} H_u - H_d^{\dagger} H_d)^2 - g_2^2 \Delta_2 \sum_a (H_u^{\dagger} \sigma^a H_u + H_d^{\dagger} \sigma^a H_d)^2$$

 \sim

 \mathbf{O}

$$m_z^2 \to m_z^2 + \left(\frac{g_1^2 \Delta_1 + g_2^2 \Delta_2}{2}\right) v_{ew}^2$$

 $W_{NMSSM} \supset \lambda SH_{u}H_{d}$ $V(\phi's) \supset \lambda^2 |H_u H_d|^2$

 $m_{h_{\alpha}}^2 = m_z^2 \cos(2\beta) + \lambda^2 v_{em}^2 \sin(2\beta)$

•F-term enhancement only for small tanbeta

A meta model

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1)_A, \operatorname{SU}(2)_B, \operatorname{SU}(3)_c, U(1)_B, \operatorname{SU}(2)_A)$	R -Parity
\hat{q}	\widetilde{q}	q	3	$(\frac{1}{6}, 1, 3, 0, 2)$	-1
Î	ĩ	l	3	$(-rac{1}{2}, 1, 1, 0, 2)$	-1
\hat{H}_d	H_d	\tilde{H}_d	1	$(-rac{1}{2}, 1, 1, 0, 2)$	+1
\hat{H}_u	H_u	\tilde{H}_u	1	$(\frac{1}{2}, 1, 1, 0, 2)$	+1
\hat{d}	\tilde{d}_R^*	d_R^*	3	$(\frac{1}{3}, 1, \overline{3}, 0, 1)$	-1
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3}, 1, \overline{3}, 0, 1)$	-1
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1, 1, 0, 1)	-1
Ĺ	L	ψ_L	1	$(-rac{1}{2},\overline{2},1,rac{1}{2},2)$	+1
$\hat{\tilde{L}}$	\tilde{L}	$\psi_{ ilde{L}}$	1	$(rac{1}{2}, 2, 1, -rac{1}{2}, \overline{2})$	+1
\hat{K}	K	ψ_K	1	(0, 1, 1, 0, 1)	+1
Â	Α	ψ_A	1	(0, 3, 1, 0, 1)	+1

Table 2. Matter fields of the model.

$$\begin{split} W_{\rm SSM} &= Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u \, - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d \, - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d \, + \mu \,\hat{H}_u \,\hat{H}_d \\ \\ W_{\rm Quiver} &= \frac{Y_K}{2} \hat{K} (\hat{L} \,\hat{\tilde{L}} \, - V^2) \, + Y_A \,\hat{L} \,\hat{A} \,\hat{\tilde{L}} \end{split}$$

The most sophisticated model so far implemented into a spectrum generator (SARAH/SPHENO) A *meta*-model i.e. *independent* of the type of supersymmetry breaking: AMSB, mSUGRA, GMSB, phenomenological, other?

Building a taylor made spectrum generator!

- We used SARAH (written by Florian Staub) mathematica package: "a spectrum generator generator" to write our own spectrum generator.
- We implemented 5 gauge groups with full 2-loop RGE's and one loop self energies (soon 6 and 9 gauge groups!).
- Higgsing, and breaking to the diagonal 4 gauge groups, including all mixing matrices and assignment of Goldstones, Ghosts, RGEs of vevs, and Bmu at 2 loop.
- All 3 and 4 vertices of all fields computed, and self energies.
- All anomalous dimensions, tadpoles and running of all additional soft terms and additional Yukawas, at 2 loop level.
- finite shifts and threshold corrections also accounted for
- Can talk to FeynArts, FormCalc, CalcHep, Higgsignals, HiggsBounds, WHIZARD. micrOMEGAS, Vevacious and more.

Same precision as SOFTSUSY, SPheno, SUSPECT

LHC

Quiver @ M messenger

Bharucha, Goudelis, M.M. 1310.4500

The Quiver Variations

• v < 10 TeV $m_{L}^{2} > m_{v}^{2}$

We assumed GMSB for soft terms!

Ex. Applying mSUGRA here may get v down

 $\Delta = \Delta'$

Bharucha, Goudelis, M.M. 1310.4500

	MI	MIIa	MIIb						
Input values									
М	233 TeV	288 TeV	260 TeV						
$\Lambda_{1,2}$	$44.9 { m TeV}$	$85.6 { m TeV}$	$111 { m TeV}$						
Λ_3	$190 { m TeV}$	$206 { m TeV}$	$208 { m TeV}$						
m_L^2	47.3 TeV^2	83.3 TeV^2	86.2 TeV^2						
v	$26.2 { m TeV}$	$26.5 { m TeV}$	$25.4 { m TeV}$						
$ heta_1, heta_2$	1.18, 1.13	1.09, 1.33	1.05, 1.04						
$\tan\beta$	16	12	28						
	Squa	rk sector							
$m_{\tilde{t}_1}$	$1.84 { m TeV}$	$1.99 { m TeV}$	$409 \mathrm{GeV}$						
$m_{\tilde{t}_2}$	$1.98 { m TeV}$	$2.06 { m TeV}$	$3.49 { m TeV}$						
A_t	$-442 \mathrm{GeV}$	-146 GeV	-141 GeV						
$m_{\tilde{b}_R}$	$1.95 { m TeV}$	$2.05 { m TeV}$	$2.56 { m TeV}$						
$m_{\tilde{q}_{12,L}}$	$2.05 { m TeV}$	$2.12 { m TeV}$	$2.19 { m TeV}$						
$m_{\tilde{q}_{12,R}}$	$1.97 { m TeV}$	$2.10 { m TeV}$	$2.14 { m TeV}$						
	Slept	on sector							
$m_{\tilde{l}_{12,L}}$	$738 {\rm GeV}$	$314 \mathrm{GeV}$	$515 { m GeV}$						
$m_{\tilde{l}_{3,L}}$	$736 {\rm GeV}$	$315 {\rm GeV}$	$440 {\rm GeV}$						
$m_{\tilde{l}_{12,R}}$	$901 { m GeV}$	$183 { m GeV}$	$262 { m ~GeV}$						
$m_{\tilde{l}_{3,R}}$	$899 {\rm GeV}$	$110 { m GeV}$	$4.31 { m TeV}$						
	Gaug	ino sector							
$m_{\tilde{\chi}^0_1}$	$53.2 \mathrm{GeV}$	116 GeV	$154 \mathrm{GeV}$						
$m_{\tilde{\chi}_2^0}$	$99.3~{\rm GeV}$	$242 \mathrm{GeV}$	$306 {\rm GeV}$						
$m_{\tilde{\chi}_2^0}$	$187 { m GeV}$	$750 { m ~GeV}$	$818 {\rm GeV}$						
$m_{\tilde{\chi}^0_A}$	$222 { m GeV}$	$755 { m GeV}$	$823 { m GeV}$						
$m_{\tilde{\chi}_1^{\pm}}$	$96.8~{\rm GeV}$	$242 \mathrm{GeV}$	$306 { m ~GeV}$						
$m_{\tilde{\chi}_2^{\pm}}$	$225~{\rm GeV}$	$756 {\rm GeV}$	$823 { m GeV}$						
$m_{\tilde{g}}$	$1.62 { m TeV}$	$1.66 { m TeV}$	$1.75 { m TeV}$						
	Higg	gs sector							
m_{h_0}	$125 \mathrm{GeV}$	$127 \mathrm{GeV}$	$125 \mathrm{GeV}$						
m_{H_0}	$720 \mathrm{GeV}$	$792 {\rm GeV}$	$885 {\rm GeV}$						
m_{A_0}	$721 \mathrm{GeV}$	$796 {\rm GeV}$	$894 {\rm GeV}$						
m_{TT}	726 GeV	799 GeV	893 GeV						

Extensions:

6 gauge groups

- resolve issue of MHu^2 and V
- Other SUSY breaking parameterisations?
 - Single regime spectrum generator
- Add the states to PDG etc....

A renormalisable way to model an extra dimension

Ex. KK gluons, gluinos, Z', KK W's

Can talk to FeynArts, Formcalc,CalcHep, Higgsignals, HiggsBounds, WHIZARD,microOMEGA,Vevacious and more

"Deconstructed Holography for Gauge Mediation" M.M. Rodo A holographic quiver

M.M. Rodolfo Russo 1004.3305 M.M. Daniel C.Thompson 1009.4696 M.M. 1210.4935

- non decoupled D-terms
- extra adjoints of SU(2),SU(3)
- Interesting RGE's

Table 1: Operators corresponding to the bulk fields of the model.