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Sources of neutrinos and experiments

e.g. OPERA e.g. Daya Bay

e.g. Borexino

e.g. super kamiokande
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Experimental findings on neutrino properties 
 2 differences between squared masses (m2)
 3 mixing angles (sin2) → PMNS matrix

 We don't know
 Mass hierarchy
 CP violation
 How to explain 

the anomaly at 
short distance
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The reactor antineutrino anomaly

 Deficit in the observed number of antineutrinos with respect to the 
expected number (5-10% or ~3) for short baseline experiments

 Predicted flux could be wrong 
→ very hard calculation with lot of assumptions / large uncertainty 

 New physics (e.g. antineutrinos oscillate to a ~1eV 'sterile' neutrino)

(see also A. Hayes, invited seminar March 12)
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Aim of the SoLid experiment
 Short baseline Oscillation search with Lithium-6 Detector

 Confirm or rule out the reactor anomaly within the next 3 years
 Measure and calculate precisely the electron anti-neutrino flux 

at very short distance from the reactor core
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The SoLid experiment:

Sensitivity to the oscillation to 
a new unseen neutrino 
species with m2 ~ 1eV2 with 
respect to the known mass 
states over a wide range of 
mixing angles
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The SoLid collaboration
 3 countries, 9 institutes, ~45 people (IIHE: Jorgen, Simon, Petra)
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SCK-CEN https://www.sckcen.be/
SCK-CEN (Mol)

https://www.sckcen.be/
https://www.sckcen.be/
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The BR2 reactor at SCK-CEN

 Tank in pool 
reactor for 
material 
irradiation

 Compact core
 Low background
 Highly enriched 

uranium
 45 – 75 MW 

thermal power
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The BR2 reactor at SCK-CEN

 Tank in pool 
reactor for 
material 
irradiation

 Compact core
 Low background
 Highly enriched 

uranium
 45 – 75 MW 

thermal power

Twisted hyperboloid
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The BR2 reactor at SCK-CEN

SoLid experiment on axis with reactor core 
(minimal distance of 5.5 meters)

→ relatively low background from  and neutrons

 Tank in pool 
reactor for 
material 
irradiation

 Compact core
 Low background
 Highly enriched 

uranium
 45 – 75 MW 

thermal power
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Relatively low background from  rays @ BR2
 Compared to other (research) reactors, the background is low:

 Mostly low-energy (~1MeV) 
 Almost no reactor neutrons (stopped by the concrete wall)

 Gamma-ray spectra measured with high-purity Ge detector
 Left: at level of SoLid detector, right: at level with low shielding
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The SoLid experiment at BR2

 Baseline 5.5 – 11 meters
 Detector can be moved or extended 
 Shielding (overburden) from cosmic rays is about 10 mwe
 ~150 days of data per year (4 – 6 cycles of about 25 days) from 

Spring 2016 onwards

BR2 core

Lead wall

SoLid

concrete wall

5m
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Outline
 Production and detection of antineutrinos
 The SoLid detector technology
 The different phases of the SoLid experiment

 Prototype: proof of concept
 First submodule

 Reactor flux calculation

 Physics potential of the first submodule

 Towards the next phase of SoLid
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Production and detection of antineutrinos
 Antineutrinos are produced 

through beta decay:
 These antineutrinos can be 

detected through so-called 
inverse beta decay (IBD):

e

e

 BR2 uses highly enriched 
Uranium, Plutonium + decay 
products as fuel

 In SoLid the neutron is 
captured by a Lithium-6 
nucleus
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The SoLid detector technology
 Traditional approach: liquid 

scintillator doped with Gadolinium

 Advantages of the SoLid detector:
 Segmented → localize more precisely the 

antineutrino interaction (spatial resolution of 5 cm)
 Better ID of inverse beta decay because of 

topological discrimination
 Easily extensible

 The SoLid detector: plastic 
scintillator with a Lithium-6 sheet 

read out with
silicon photon 

multiplier 
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Detection principle: prompt+delayed signal
 Prompt signal from e+ annihilation in PVT

 Neutron thermalises in PVT
 Delayed capture in Lithium-6 (t<200 s )
 Helium-3 and Helium-4 () absorbed in 

ZnS (inorganic scintillator) 

 PVT and ZnS have different photon 
emission time constants
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neutron candidate

e//-candidate

NEMENIX

NEMENIX

Example of an inverse beta decay (IBD) event
 A pulse shape analysis is 

performed to distinguish ZnS 
signals (neutrons) from PVT 
signals (e//)

e+

n
γ

 Aim is to trigger on neutrons  

SIMULATION

 Segmentation of the detector 
volume allows:

 Location of IBD event

 Efficient background rejection 
(n should be close to e+) 

 Energy of e+ gives  energy 
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Discrimination power of a topological cut
 An important background to control are high-energy (fast) neutrons

 From the reactor (small at BR2)
 Induced by cosmic muons

e+

n
γ

SIMULATION SIMULATION

 New way to reject backgrounds, because of the different topology
 E.g. require neutron-like signal close to a positron-like signal (<2 

cubes away)

p
n
γ

Nuclear recoil 
identified as e+
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From R&D to a full-scale detector
 NEMENIX: 8kg prototype (R&D)

 20 x 20 x 20 cm3

 Summer 2013 → Spring 2015
 Results expected by Summer 2015

 SM1: 288 kg first module (Phase 1)
 80 x 80 x 45 cm3

 Winter 2014 → Summer 2015
 Data taken with reactor on in February
 Allows a measurement of the antineutrino flux 

with ~7% precision

 Full scale SoLid detector: 2.88 tonne 
 Funding available for 3 x 288kg (Phase 2)
 Dimensions under discussion → production 

starting soon
 2016 → 2020+
 Perform oscillation analysis
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Detector technology tested with NEMENIX
 64 cubes optically isolated

 32 read-out channels

 Proof of concept: segmentation, 
composite scintillator

 Develop reconstruction 
techniques

 Measure backgrounds at 
experimental location
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n candidates

muons (cosmic)

prompt EM signals

The prototype did an excellent job
 Excellent particle ID
 Hint of inverse beta decay 

interactions

 Currently calibrating energy response, publish by Summer



24

Outline
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Construction of the first submodule (SM1)
 2304 cubes: 

(cutting, washing, 
weighting, adding Lithium 
sheet (weighted), 
wrapping in Tyvec, 
weighing

 9 aluminum frames

 8 months from construction to commissioning
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All material in the plane is weighted to <1%
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SM1 read-out system

 Electronics



28

SM1 plane commissioning with Cobalt-60

Check channel mapping, identify dead channels, measure attenuation
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Plane loading in SM1 and deployment @BR2

Alignment with respect to the reactor center is known to 2 mm

SM1 in position: Nov. 27, 2014
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The current situation at BR2

 As planned, BR2 is now in maintenance for 1 year (until Spring 2016)
 Last week NEMENIX was removed and transported to the UK (for calibrations)
 SM1 is taking data with radioactive source (to allow energy calibration)
 Detector has to be removed by the end of May
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 Trigger on time-coincident signal above threshold in an x and y channel of the 
same plane → signal in a cube

 Monitor trigger rate for each plane (rate is 2x higher when reactor is on)
 Some channels are hot/noisy

SM1 commissioning at BR2

Plane 2
Reactor ON



32

Outline
 Production and detection of antineutrinos
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Muon tracking in SM1 works

 Cosmic rays → known angular 
distribution

 Altered by shielding and detector 
sensitivity

 Clear shielding from the right 
(concrete wall around reactor)

 Discretisation is caused by the 
detector segmentation 
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We see prompt signals, neutrons and noise...

 But we are also fighting periodic noise in some channels, e.g.:

Raw signal after baseline subtraction
First attempt for noise correction
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Also work ongoing from the simulation side 

 SM1 geometry implemented in GEANT4
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Calculating the number of neutrinos is tricky 
 Conversion method is used 

to calculate the reactor flux
 Fission rates can be 

computed: good agreement 
between two codes (BR2 + 
SoLid) for the evolution of 
the fission rate

Al

Reactor core
Fuel element

H2O fuel
Be matrix

CR

Evolution of fission rate with time
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Simulation of the spatial distribution of the flux
 We need also the spatial distribution of the flux
 Start with a single fuel element (example for U-235 isotope)

 Next step, do the 
same for the full core

 Core geometry now 
implemented in Root

GEOMETRY
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Physics potential of SM1

 First rate measurement at 
5.5m from a reactor core

 Demonstrate technology is 
mature

 <5% statistical accuracy

 Measure IBD efficiency and 
reconstruct energy 
spectrum

 First insight into reactor 
anomaly at this distance

 Aim at 6-8% total 
uncertainty  
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Towards the next phase of SoLid
 BR2 down until Spring 2016 

 Funding for 0.9 tonne detector  
→ for Spring/Summer 2016

 Secure more funding to 
increase the mass (detector is 
easily extensible with more 
planes if design is kept)

 5 years of running

 Measure or rule out short baseline oscillations (near/far)

 Compare measured and calculated flux and spectrum

 Fuel composition measurements
→ detector useful for reactor monitoring (non-proliferation treaty)? 
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Expected sensitivity of SoLid
 Event rate 416 e/day/tonne (assuming an IBD event efficiency of 41%)

 2.88 tonne detector mass

 Energy resolution of 17% at 1MeV

 300 days running (140 days/year)

 Positron threshold of 0.6MeV

 S:B of 6:1 assumed

 Systematics:

 Spectrum normalization: 1.8%

 Spectrum shape: 0.7 – 4%

 Thermal power: 3%

 Detection efficiency: 2%
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Conclusions: a lot of action, first results from 
NEMENIX and SM1 expected by Summer

 Currently optimizing particle identification (muons, positrons, 
gammas, neutrons)

 Also developing simulation for cross-checks
 Measuring:

 Particle rates
 Hit efficiency of cubes and muon veto planes
 Light yield

 Calibration of the energy with radioactive sources and muons
 Optimisation of the selection of inverse beta decay events
 Reactor flux calculation, including spatial distribution

→ stay tuned for the first results in a couple of months

 In parallel to SM1 activities:
 Results for NEMENIX being finalized
 Design and construction of phase 2 detector 
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Additional material
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Effect of reactor and detector choices on 
sensitivity

Smaller core

Reactor power
Efficiency for IBD
Less background

Increasing baseline

Minor effects:
● Fuel type
● Background shape

Spatial/energy resolution

Increasing baseline

Smaller 
oscillation length

oscillation
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Sensitivity using shape only

shape+rateshape only
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New reactor experiments



47

New reactor experiments
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Very short baseline reactor experiments
 Hot topic in the field of neutrino physics

 Identify antineutrino interactions, but detector constraints:
 Small – tonne scale
 Reactor safety / limited access

 Control of the background is the key to reach the best sensitivity
 Cosmics at ground level

 High-energy neutrons
 Cosmogenic decay 

 Fast neutrons
 Nuclear recoil identified as e+, thermalised neutron is captured

 Reactor gammas
 Increase accidental background
 Impact on e+ measurement
 Can impact neutron detection
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Background from cosmics
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Expected efficiency for IBD events
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The gallium anomaly (solar neutrinos)
 GALLEX and SAGE experiments 

 Counting conversion rate of 
Gallium to Germanium by solar 
neutrino capture

 Deficit of observed neutrino 
interactions compared to the 
expected number

 No oscillation hypothesis 
disfavoured at more than 99.9% CL

 Significance of best fit ~3.3allowed region
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