

New physics searches using $b \to s\ell\ell$ transitions at LHCb

Konstantinos A. Petridis

University of Bristol

July 3, 2015

- A brief introduction to heavy flavour
- Electro-Weak penguin processes
- \blacktriangleright How and what do we measure
- EHCb results and implications
- ▶ Outlook

Important questions

- What is the origin of dark matter?
- Why is there a hierarchy of fermion masses?
- Why do elements of the CKM matrix have a large spread?
- What is the origin of CP violation in the universe?

The Standard Model (SM) for all its success has no answers to these

Studying properties of top-quarks, beauty and charm hadrons can shed some light

Higgs and flavour

Two sides of the same coin

 \blacktriangleright Yukawa couplings $(Y^{U,D})$ of quarks to Higgs field:

$$
\mathcal{L}_Y = \bar{u}_{Ri} Y_{ij}^U \phi^{c\dagger} Q_{Lj} + \bar{d}_{Ri} Y_{ij}^D \phi Q_{Lj}
$$

 \blacktriangleright $Y^{U,D}$ matrix in 3 quark generations is not necessarily diagonal

 \blacktriangleright Transformation of u, d, Q to mass eigenstates: \triangleright Diagonalises $M^U = V_{u_R} Y^U V_{u_L}^{\dagger}$ and $M^D = V_{d_R} Y^D V_{d_L}^{\dagger}$ \triangleright *W* couplings become non-diagonal: $W^+_\mu \bar{u}_L \gamma^\mu d_L \to W^+_\mu \bar{u}_L V^\dagger_{u_L} V_{d_L} \gamma^\mu d_L$ (Vckm = $V^\dagger_{u_L} V_{d_L}$)

- In SM, Z_{γ} couplings remain diagonal! \rightarrow No tree level Flavour Changing Neutral Currents (FCNC)
	- \triangleright Z and γ couplings are invariant under transformation. Consequence of s,d,b having same $SU_I(2) \times U_Y(1)$ quantum numbers

CKM and masses

- \blacktriangleright One complex phase accounts for CPV in SM $(\mathcal{O}(10^{10})$ too small)
- ► Do not understand relative sizes of the values $(|V_{ub}| = \mathcal{O}(10^{-3})|V_{tb}|)$
- ► Pattern of masses similarly puzzling $(m_u = \mathcal{O}(10^{-3})m_t)$

Experimental approaches

SM could be a low-energy effective theory of a more fundamental theory at higher energy scale with new particles, dynamics/symmetries.

Direct approach

 \blacktriangleright Rely on high energy collisions to produce new particle(s) on-mass-shell, observed through their decay products

Indirect approach (typical of flavour)

▶ New particles appear off-mass-shell in heavy flavour processes, leading to deviations from SM expectations

Interplay of direct and indirect measurements

Flavour physics has played central role in the development of the SM

► c-quark inferred from measurement showing suppression of $K^0 \to \mu^+ \mu^$ rate compared to $K \rightarrow \mu \nu$ (GIM 1970)

- \triangleright Discovery of J/ ψ in 1974 (SLAC, BNL)
- \blacktriangleright t, b-quarks inferred from CP violation in K sector (KM of CKM 1973)
- \blacktriangleright Limit on top quark mass $m_t > 50$ GeV from B^0 mixing (ARGUS 1987)
	- \triangleright Discovery of the *t*-quark 1995 (D0, CDF)
- Weak neutral current inferred from neutrino scattering in Gargamelle (1973) Discovery of the Z boson 1983 (UA1,UA2)

New physics probes

Search for deviations from SM predictions from virtual contributions of new heavy particles in loop processes

- ▶ Measure CP violating phases and study rare decays of heavy quarks
- ▶ Compare to very precise predictions of the SM
	- \triangleright Uncertainties from QCD is main problem
- \triangleright Most interesting processes those where SM contribution is suppressed (e.g. FCNC)
	- \triangleright Effects of New Physics (NP) are large
- \triangleright Discovery potential for NP extends to mass scales \triangleright centre-of-mass energy of collision

Heavy flavour production

► Prolific charm production at hadron machines ($\sigma_{c\bar{c}} \sim 20 \times \sigma_{b\bar{b}}$ @LHC)

Electroweak penguin processes

- \rightarrow b \rightarrow s FCNC transitions are suppresed in SM
- Only occur via loop or box processes
- First $b \to s$ transition observed in $B^0 \to K^{*0}\gamma$ decays by CLEO in 1993
	- \triangleright Expected $\mathcal{B} = (2 4) \times 10^{-5}$
	- \triangleright Measured (4.5 ± 1.7) × 10⁻⁵ → stringent constraints on parameter space of new physics
	- \triangleright Current average (4.34 ± 0.15) \times 10⁻⁵

Electroweak penguin processes

-
- \rightarrow b \rightarrow s FCNC transitions are suppresed in SM
- Only occur via loop or box processes
- First $b \to s$ transition observed in $B^0 \to K^{*0}\gamma$ decays by CLEO in 1993
	- \triangleright Expected $\mathcal{B} = (2 4) \times 10^{-5}$
	- \triangleright Measured (4.5 ± 1.7) × 10⁻⁵ → stringent constraints on parameter space of new physics $10-5$
	- \triangleright Current average (4.34 ± 0.15) \times 10⁻⁵ $\frac{10}{10}$

Theoretical Formalism

- Model independent approach
- \triangleright "Integrate" out heavy ($m \ge m_W$) field(s) and introduce set of Wilson coefficients C_i , and operators \mathcal{O}_i encoding long and short distance effects ment approach
t boars $(m > m_{\nu})$ f effects

Separation

$$
\mathcal{H}_{\textrm{eff}} \approx -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts(d)}^* \sum_{i=1}^{10,5,P,T} (C_i^{SM} + \Delta C_i^{NP}) \mathcal{O}_i
$$

 \blacktriangleright c.f. Fermi interaction and G_F \overline{a} \blacktriangleright c.f. Ferriff interaction and GF .

New physics enters at the Λ_{NP} scale

Sensitivity to New Physics

 \blacktriangleright $b \rightarrow s(d)\mu^+\mu^-$ transitions probe a range of operators

► In SM $C_{S,P} \propto m_{\ell} m_b/m_W^2$ In SM chirality flipped O_i suppressed by m_s/m_b

Setting the scene **Experimental Environmental Environm**

- ► LHC $\sigma_{b\bar{b}} = 280 \mu b \otimes \sqrt{s} = 7 \text{ TeV}$ (scale \sim linear with \sqrt{s})
- \triangleright $\sigma_{b\bar{b}}$ in LHCb acceptance ~ 76 μ b \triangleright c.f $\sigma_{b\bar{b}} = 0.001 \mu b$ @ B-factories $\sim \sigma_{b\bar{b}}$ in L -TICD acceptance \sim 10 μ D

The LHCb detector The LHCb Detector

- \blacktriangleright B-lifetime means displaced secondary vertex
- ▶ Operate at inst. luminosity 10-50 times lower than central detectors

Detector performance

- ► VeLo $\sigma_{IP}^{trk} \sim 20 \,\mu\text{m}$ for $p_T^{trk} > 2$ GeV
	- \triangleright Tracking δ*p/p* = 0.4 − 0.6% \triangleright Mass res
	- RICH $\epsilon_K^{id} = 95\%$ for 5% mis-id $\epsilon_D \in \text{CMS}$:
	- **Muon** $\epsilon_{\mu}^{id} = 98\%$ for 1% mis-id $\epsilon \approx 100$ exclusive decays with final state hadron(s) mis $\mathcal{L}(\mathcal{L})$ mis $\mathcal{L}(\mathcal{L})$
- Mass resolution $J/\psi \rightarrow \mu \mu$
- real leptons in the events of \mathbb{R} LHCb: 13 MeV
and \mathbb{R} and same meson-decays in the same meson-decays in the same meson-decays in the same meson-decays in the same meson-
	- \triangleright CMS: 28 MeV [arXiv:1011.4193]
	- \triangleright ATLAS: 46 MeV $IarXiv:1104.30381$

The LHCb trigger in Run-I

The challenge

- \triangleright Only 1 in 200 pp inelastic events contain a b-quark
- Looking for B-hadron decays with $BR \sim 10^{-6} 10^{-9}$

- $\frac{1}{2}$ calorimeter and muon systems
- \blacktriangleright HLT1 (Software): Partial reco/selection on one or two displaced tracks, muon ID displaced tracks/muon ID
- ► HLT2 (Software): Global reco (close to offline), mostly for inclusive signatures using MVA

 \mathcal{E}

LHCb dataset

► Total of 3 fb^{-1} at instantaneous luminosities of up to 4×10^{32} cm⁻²s⁻¹ (double the design value!)

Inclusion of Run-II data will quadruple current dataset will not be the step-change from higher √s anticipated at the central step-central at the central step-central

Experimental aspects

Selection:

- \triangleright Reduce combinatorial background using Multivariate classifiers, (typically Boosted Decision Tree)
	- \triangleright Using kinematic and topological information
	- \triangleright Variable choice based on minimising correlation with mass
- Reduce "peaking" backgrounds using particle-ID information
	- Exclusive decays with final state hadron(s) mis-Id **B→µ+µ-**
- \triangleright Extendive decays with mial state mation (s) and the contract \triangleright Estimate by mixture of MC and data-driven studies \triangleright Countries by interest of the set $T_{\rm tot}$ of decay simple decay simple $T_{\rm tot}$ $\overline{}$ challenger and selection efficiency high-

Experimental aspects

Normalisation:

 \triangleright Make use of proxy-decay (same topology) of known β to normalize against

$$
\mathcal{B}(sig) = \frac{N_{sig} \epsilon_{sig}}{N_{prx} \epsilon_{prx}} \mathcal{B}(prx)
$$

Reduces experimental uncertainties

Acceptance correction:

- Efficiency parametrised depending on type of measurement of β
	- \triangleright Differential with respect to di-muon mass squared (q^2) or angular distribution of decay products of the b-Hadron
snow (c) obtained from MC corrected from data
- Efficiency (ϵ) obtained from MC corrected from data $\frac{1}{2}$

Experimental aspects

Normalisation:

 \triangleright Make use of proxy-decay (same topology) of known β to normalize against

$$
\mathcal{B}(sig) = \frac{N_{sig} \epsilon_{sig}}{N_{prx} \epsilon_{prx}} \mathcal{B}(prx)
$$

 \triangleright Reduces experimental uncertainties

Acceptance correction:

- Efficiency parametrised depending on type of measurement of β
	- \triangleright Differential with respect to di-muon mass squared (q^2) or angular distribution of decay products of the b-Hadron
- Efficiency (ϵ) obtained from MC corrected from data

An intriguing set of results

- 1. Measurements of decay rates of $B \to K^{(*)} \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^ \rightarrow$ Large theory uncertainties. But lattice calculations provide precision at large dimuon masses squared (q^2)
- 2. Measurements of ratios of decay rates of $B \to K^{(*)} \ell^+ \ell^ \rightarrow$ Cancellations of hadronic form-factor uncertanties in predictions
- 3. Angular analyses of $B \to K^{(*)} \mu^+ \mu^-$ and $B_{\mathsf{s}} \to \phi \mu^+ \mu^ \rightarrow$ Can access observables with reduced dependence on theory uncertainties
- 1

¹No time to discuss CP and Isospin asymmetry measurements, latest $Λ_b → Λμμ,$ $B\to K^*e^+e^-$, $B_s\to\phi\mu\mu$ $B^{+,0}\to K^{+,0}\mu^+\mu^-$ angular analyses, $B\to\pi\pi\mu\mu$ BFs K.A. Petridis (UoB) b $b \rightarrow s\ell\ell$ [at LHCb](#page-0-0) Brussels Seminar 20 / 42

1. Decay rate measurements

- ▶ Large LHCb datasets allows for precision measurements
- Results hint towards lower rates than predicted
	- \rightarrow Could be explained with new physics in C_{9} e.g Z'

1. Decay rate measurements

- Large LHCb datasets allows for precision measurements
- Precision from lattice also confirms this

0.0

0.0

First interpretation

Nector-like contribution could come from new tree level contribution from a Z' with mass of $\mathcal{O}(10)$ TeV.

▶ Vector-like contribution could point to a problem with our understanding of QCD, e.g. are we correctly estimating the contribution for charm loops that produce dimuon pairs via a virtual photon.

BES-II R-ratio interlude

- ► Charmonium resonances 1^{--} above open charm (DD) threshold from BES $=$ 5.9 even per substituting $(2 - 9)$ $\frac{1}{2}$ MeV/c2 58 $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$
	- \blacktriangleright Fits account for interference between states a product of branching fractions, Barcoca is a product of the second states of the second states
	- ► Watch out. PDG information is misleading! m mation is final during:

What can $c\bar{c}$ say about this?

VVNat Can CC Say about this!

For the first time c \bar{c} resonances observed in high q^2 region of $B^+ \to K^+ \mu^+ \mu^-$ using full RunI data [PRL 111,112003 (2013)]

- of the $B^+ \to K^+ \mu^+ \mu^-$ rate in that region [PRL 111,112003 (2013)] $U(x) = U(x)$ unconstrained resonance matches ► Resonant contribution (including interference) at high q^2 amounts to $\sim 20\%$
	- $\blacktriangleright \; \mathcal{B}(B^+ \to K^+ \psi_{4160} (\mu^+ \mu^-)) = 3.9^{+0.7}_{-0.6} \times 10^{-9}!$
		- \triangleright Sensitive due to interference with large non-resonant component!
	- \blacktriangleright How does this fit in with QCD treatment of high q^2 ?

 P_{max} $K.A.$ $Petr$

The repulsive charm

Assuming factorisation of the hadronic and dimuon systems, can predict
BES constant contribution by simultaneously fitting e^+e^- , the drop data from resonant contribution by simultaneously fitting $e^+e^- \rightarrow$ hadron data from $\frac{\mathsf{PFL}_{\mathsf{L}}\mathsf{C}_{\mathsf{C}}\mathsf{L}_{\mathsf{C}}\mathsf{L}_{\mathsf{C}}\mathsf{L}_{\mathsf{S}}\mathsf{L}_{\mathsf{D}}\mathsf{L}_{\mathsf{D}}}{R(q^2) = \frac{\sigma(\varepsilon+\varepsilon-\lambda)\operatorname{ad}(\varepsilon+\varepsilon)}{2(\varepsilon+\varepsilon-\lambda)\operatorname{ad}(\varepsilon+\varepsilon)}\to K^+\mu^+\mu^-\;\text{from}\; \mathsf{LHCD}\;$ [Lyon, Zwicky 1406.0566]

 \blacktriangleright Require 350% correction on factorisation assumption
to describe LHCb data to describe LHCb data

Require large fudge factor $(\rightarrow C_{1,2}$ terms in $C_9^{\text{eff}})$

 σ in formalisation, we fit for a scale factor σ in front of the factorisable charm-loop has precisely: $\frac{1}{2}$ new physics in ζ \rightarrow Could in priniple affect measurements below the J/ψ and "mimic" new physics in \mathcal{C}_9

 \blacktriangleright R_K measurement however independent of this

$B^+ \rightarrow K^+e^+e^-$
Experimental challe Experimental challenge: $\overline{1}$ $\frac{1}{2}$

- Reduced mass resolution and q^2 migration
- \blacktriangleright Modelling of part reco backgrounds

Left: $B \to K e^+ e^-$, Right: $B \to K \mu^+ \mu^-$

- ▶ Correct for bremsstrahlung by looking for compatible photons in calorimeter
- Sorrect for q^2 migration from simulation
- Determine part-reco from combination of data and MC

2. Ratios of decay rates

- Recent measurement of: $R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$ $\overline{{\cal B}(B^+\to K^+e^+e^-)}$ [1406.6482 accepted by PRL]
	- \triangleright Precise theory prediction due to cancellation of hadronic form factor uncertainties
- Expected to be 1.000 in SM (Higgs contribution m_ℓ suppressed)
- ► Z' models with enhanced couplings to muons e.g [Altmannshofer et al 1403.1269]
- \rightarrow Destructive interference with SM can lead to $R_{\mathcal{K}} < 1$

- \blacktriangleright Measure for $1 < q^2 < 6$ GeV²/ c^4 $\rightarrow R_K = 0.745^{+0.090}_{-0.074} \mathrm{(stat)} \pm 0.035 \mathrm{(syst)}$
- ► R_K consistent at $\sim 2.6\sigma$

 \blacktriangleright Consistent with decay rate measurements assuming Z' does not couple to electrons. The SM prediction is also shown as a continuous function of \tilde{Z} eie

- \blacktriangleright Assuming only P -wave $K\pi$ system (see later)
- Ignoring scalar contributions and lepton masses: $S_{\rm t}$ = $S_{\rm t}$ = gnoring scalar contributions and repton masses.
 $P(A,B,A,B,A)$
- ► S_i terms depend on K^* spin amplitudes $A_0^{L,R},A_{\parallel}^{L,R},A_{\perp}^{L,R}$ $\frac{1}{\sqrt{2}}$ contribution to the K+ $\frac{1}{\sqrt{2}}$ ${}_{\parallel}^{L,R}$, $A_{\perp}^{L,R}$ ⊥

 λ , retriums (OOD)

Angular terms presence of scalar contributions a new amplitude A^S must be included. The expressions ϵ in gatar components ϵ

$$
J_{1s} = \frac{(2+\beta_{\ell}^{2})}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} \right] + \frac{4m_{\ell}^{2}}{q^{2}} \text{Re} \left(A_{\perp}^{L} A_{\perp}^{R^{*}} + A_{\parallel}^{L} A_{\parallel}^{R^{*}} \right),
$$

\n
$$
J_{1c} = |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\ell}^{2}}{q^{2}} \left[|A_{t}|^{2} + 2 \text{Re}(A_{0}^{L} A_{0}^{R^{*}}) \right] + \beta_{\ell}^{2} |A_{S}|^{2},
$$

\n
$$
J_{2s} = \frac{\beta_{\ell}^{2}}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} \right], \qquad J_{2c} = -\beta_{\ell}^{2} \left[|A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} \right],
$$

\n
$$
J_{3} = \frac{1}{2} \beta_{\ell}^{2} \left[|A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + |A_{\perp}^{R}|^{2} - |A_{\parallel}^{R}|^{2} \right], \qquad J_{4} = \frac{1}{\sqrt{2}} \beta_{\ell}^{2} \left[\text{Re}(A_{0}^{L} A_{\parallel}^{L^{*}} + A_{0}^{R} A_{\parallel}^{R^{*}}) \right],
$$

\n
$$
J_{5} = \sqrt{2} \beta_{\ell} \left[\text{Re}(A_{0}^{L} A_{\perp}^{L^{*}} - A_{0}^{R} A_{\perp}^{R^{*}}) - \frac{m_{\ell}}{\sqrt{q^{2}}} \text{Re}(A_{\parallel}^{L} A_{S}^{*} + A_{\parallel}^{R^{*}} A_{S}) \right],
$$

\n
$$
J_{6s} = 2 \beta_{\ell} \left[\text{Re}(A_{\parallel}^{L} A_{\perp}^{L^{*}} - A_{\parallel}^{R
$$

Amplitudes I

[JHEP 0901(2009)019] Altmannshofer et al.

$$
\begin{aligned} A^{L(R)}_{\perp} &= N\sqrt{2\lambda} \bigg\{ \big[(C^{eff}_{9} + C'^{eff}_{9}) \mp (C^{eff}_{10} + C'^{eff}_{10}) \big] \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (C^{eff}_{7} + C'^{eff}_{7}) T_{1}(q^{2}) \bigg\} \\ A^{L(R)}_{\parallel} &= -N\sqrt{2} (m_{B}^{2} - m_{K^{*}}^{2}) \bigg\{ \big[(C^{eff}_{9} - C'^{eff}_{9}) \mp (C^{eff}_{10} - C'^{eff}_{10}) \big] \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (C^{eff}_{7} - C'^{eff}_{7}) T_{2}(q^{2}) \bigg\} \\ A^{L(R)}_{0} &= -\frac{N}{2m_{K^{*}}\sqrt{q^{2}}} \bigg\{ \big[(C^{eff}_{9} - C'^{eff}_{9}) \mp (C^{eff}_{10} - C'^{eff}_{10}) \big] \big[(m_{B}^{2} - m_{K^{*}}^{2} - q^{2}) (m_{B} + m_{K^{*}}) A_{1}(q^{2}) - \lambda \frac{A_{2}(q^{2})}{m_{B} + m_{K^{*}}} \big] \\ &+ 2m_{b} (C^{eff}_{7} - C'^{eff}_{7}) \big[(m_{B}^{2} + 3m_{K^{*}} - q^{2}) T_{2}(q^{2}) - \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} T_{3}(q^{2}) \big] \bigg\} \\ A_{t} &= \frac{N}{\sqrt{q^{2}}} \sqrt{\lambda} \bigg\{ 2 (C^{eff}_{10} - C'^{eff}_{10}) + \frac{q^{2}}{m_{\mu}} (C^{eff}_{P} - C'^{eff}_{P}) \bigg\} A_{0}(q^{2}) \\ A_{S} &= -2N\sqrt{\lambda} (C_{S} - C_{S}) A_{0}(q^{2}) \end{aligned}
$$

- Cⁱ are Wilson coecients that we want to measure (they depend on \blacktriangleright C_i^{eff} are the Wilson coefficients (including 4-quark operator contributions)
- \blacktriangleright A_i , T_i and V_i , are form factors typically treated as nuisance parameters

Amplitudes II assures that the systematic construction of observables that respectively

At leading order and for large $E_{K^*} >> \Lambda_{QCD}$ (large recoil), form factors reduce to $\xi_\perp,\!\xi_\parallel$: t symmetries of the angular distribution, we must focus on the cancellation, we must focus on the cancellation of \overline{t} **Form factors.** At leading order and for large $E_K * >> N_{QCD}$ (farge recoil), form

$$
A_{\perp}^{L,R} = \sqrt{2} N m_B (1 - \hat{s}) \left[(\mathcal{C}_9^{\text{eff}} + \mathcal{C}_9^{\text{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2 \hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\text{eff}} + \mathcal{C}_7^{\text{eff}}) \right] \xi_{\perp} (E_{K^*})
$$

$$
A_{\parallel}^{L,R} = -\sqrt{2} N m_B (1 - \hat{s}) \left[(C_9^{\text{eff}} - C_9^{\text{eff}}) \mp (C_{10} - C_{10}') + \frac{2 \hat{m}_b}{\hat{s}} (C_7^{\text{eff}} - C_7^{\text{eff}}) \right] \xi_{\perp} (E_{K^*})
$$

$$
A_0^{L,R} = -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \left[(C_9^{\text{eff}} - C_9^{\text{eff}}) \mp (C_{10} - C_{10}') + 2\hat{m}_b(C_7^{\text{eff}} - C_7^{\text{eff}}) \right] \xi_{\parallel}(E_{K^*})
$$

► Can build form factor independent observables using ratios of bilinear Can bund form factor independent observables using ratios of bilinear
amplitude combinations [JHEP 1301(2013)048] Descotes-Genon et al. e.g: - 2110 · 2111
-

$$
P_5' \sim \frac{Re (A_{\rm 0}'^L A_{\perp}^{L*} - A_{\rm 0}'^R A_{\perp}^{R*})}{\sqrt{(|A_{\rm 0}'^L|^2 + |A_{\rm 0}'^R|^2)(|A_{\perp}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^L|^2 + |A_{\parallel}^R|^2)}}
$$

Experimental aspects of 1 fb⁻¹ result

- Previous analysis $JH = 08(2013)131$ extracted all observables from separate fits to the data (by transforming the angular distribution)
	- \triangleright Cannot trivially correlate experimental uncertainties
- \blacktriangleright Low stats meant:
	- \triangleright Large bins in q^2 degrading sensitivity to NP
	- \triangleright S-wave contribution to $K\pi$ system ignored and systematic uncertainty added Results – P⁰ σ les
- \blacktriangleright Acceptance correction assumed to factorise in the 3 angles

$$
\blacktriangleright P'_{4,5,6,8} \propto (S_{4,5,7,8})/\sqrt{F_L(1-F_L)}
$$

- \blacktriangleright 1 fb⁻¹ of 2011 data
- **►** 3.7 σ tension in P'_5
- \triangleright 0.5% probability to see a deviation assuming 24 independent measurements

Latest $B^0 \to K^{*0} \mu^+ \mu^-$ analysis

- ► Observe ∼2400 signal candidates. .
i Events / 5.3 MeV/
- \mathbf{r} backgrounds using \mathbf{r} **►** Finer q^2 binning that 1 fb⁻¹ result
- \blacktriangleright $m_{K\pi\mu\mu}$ lineshape obtained from control channel and corrected for q^2 dependence from simulation 20 Events / 5.3 MeV/ d corrected for $\ddot{}$

Improvements since last round \cdots

Acceptance correction ance correctio

- Frigger, reconstruction and selection efficiency distorts the angular and q^2 distribution of $B^0 \to K^{*0} \mu^+ \mu^$ simulation 0 simulation -2 0 2 0
- Acceptance correction parametrised using 4D Legendre polynomials
- ► Use moment analysis in $B^0 \to K^{*0} \mu^+ \mu^-$ MC to obtain coefficients c_{klmn}
- \blacktriangleright Cross-check acceptance in $B^0 \to J/\psi K^{*0}$

$$
\varepsilon(\cos\theta_{\ell},\cos\theta_{K},\phi,q^{2}) = \sum_{klmn} c_{klmn} P_{k}(\cos\theta_{\ell}) P_{l}(\cos\theta_{K}) P_{m}(\phi) P_{n}(q^{2})
$$

Improvements since last round Efficiency Efficiency ements sin

Acceptance correction

- Frigger, reconstruction and selection efficiency distorts the angular and q^2 distribution of $B^0 \to K^{*0} \mu^+ \mu^$ simulation 0 simulation -2 0 2 0 ction and selection efficiency distorts the angular and q^2 $K^{*0}\mu^+\mu^-$
- Acceptance correction parametrised using 4D Legendre polynomials
- ► Use moment analysis in $B^0 \to K^{*0} \mu^+ \mu^-$ MC to obtain coefficients c_{klmn} is in $B^0 \to K^{*0} \mu^+ \mu^-$ MC to ir
. σ MC to obtain coefficients c_{klmn} b
- \blacktriangleright Cross-check acceptance in $B^0 \to J/\psi K^{*0}$ r
ا lS
اا

$$
\varepsilon(\cos\theta_{\ell},\cos\theta_{K},\phi,q^{2}) = \sum_{klmn} c_{klmn} P_{k}(\cos\theta_{\ell}) P_{l}(\cos\theta_{K}) P_{m}(\phi) P_{n}(q^{2})
$$

Events / 0.02 4000

Improvements since last round S-wave in $K\pi$ system \mathbf{u} \mathbf{v} is a directed resulting in six added. Observables resulting in six added. Observables resulting in six added. Observables resulting in \mathbf{v} and \mathbf{v} and \mathbf{v} and \mathbf{v} and \mathbf{v} and \math

$$
\begin{aligned} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2}\frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}}\bigg|_{\mathrm{S}+\mathrm{P}}=&(1-F_{\mathrm{S}})\,\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2}\frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}}\bigg|_{\mathrm{P}} \\ &+\frac{3}{16\pi}F_{\mathrm{S}}\sin^2\theta_\ell\ +\ \mathrm{S}\textrm{-P interference} \end{aligned}
$$

- $\mathbf{F}_\mathrm{S} = \mathbf{F}_\mathrm{S} + \mathbf{F}_\mathrm{S}$ scales $\mathbf{F}_\mathrm{S} = \mathbf{F}_\mathrm{S} + \mathbf{F}_\mathrm{S}$ and the determined precisely precisely introducing two additional decay amplitudes and 6 additional observables ► $K\pi$ system not from K^{*0} also exists in spin-0 configuration (S-wave)
- \triangleright S-wave fraction F_s scales P-wave observables
- \blacktriangleright Precise determination required
	- \rightarrow Perform simultaneous fit to $m_{K\pi}$
- S-wave described by LASS model and P-wave with relativistic BW Events *S*
Events
	- \triangleright Isobar for S-wave used as \overline{a} so \overline{b} x-check

- ► Unbinned maximum likelihood fit to 3 decay angles, $m_{K\pi\mu\mu}$ in q^2 bins, simultaneously fitting to $m_{K\pi}$ (4D+1D) to extract 8 CP-averaged $\frac{1}{2}$ b $\frac{1}{2}$ and correlations!
- observables and correlations!

Both Measurement is statistically dominated

- ► Unbinned maximum likelihood fit to 3 decay angles, $m_{K\pi\mu\mu}$ in q^2 bins, simultaneously fitting to $m_{K\pi}$ (4D+1D) to extract 8 CP-averaged observables and correlations!
- Observables and correlations:
► Measurement is statistically dominated

- \blacktriangleright Tension in P'_5 presists
- $\frac{1}{3}$ Presides Level of disagreement: 2.9 σ in [4,6] and [6,8] q^2 bins
- \blacktriangleright Naive combination 3.7 σ (not a typo...)
- Compatible with 1 fb⁻¹ measurement

- \blacktriangleright Tension in P'_5 presists
- <u>onbination results in a significance of 3.77 in a significance of 3.77 in a significance of 3.7</u> Level of disagreement: 2.9 σ in [4,6] and [6,8] q^2 bins
- \blacktriangleright Naive combination 3.7 σ (not a typo...)
- Compatible with 1 fb⁻¹ measurement

Hint of new physics?

▶ Latest global fits to the data, e.g. Altmannshofer et al. [\[arXiv:1503.06199\]](http://arxiv.org/abs/1503.06199) including $b \to K^* \gamma$, $b \to s \gamma$, $\underline{B} \to \mu^+ \mu^-$

- \sim 7 TeV for CKM-like couplings (tree) Straub et al [1308.1501]
- Difficult to accomodate within MSSM

Hint of new physics?

Could it be a QCD effect?

- If C_9^{NP} is related to a problem in our understanding of QCD then it should exhibit a q^2 dependence.
- \blacktriangleright It should be largest closest to the J/ψ .
- \triangleright Our data can help clarify the situation
- Note: Even if it is not new physics, it would be something new in QCD to understand!
- We plan dedicated measurements to dissentangle

So what is next

Full exploitation of available data:

- \blacktriangleright Have two additional ways of analysing the angular distribution of $B^0 \to K^{*0} \mu^+ \mu^-$
- \triangleright Directly fitting for q^2 dependent helicity amplitudes, maximising sensitivity $({\rm only\ possible\ }1.1 < q^2 < 6$ GeV $^2)$ KP,Egede,Patel [JHEP06(2015)084]
- Moment analysis to extract angular observables allowing finer q^2 binning in a robust way Serra,Chrzasz,v.Dyk[PRD91, 114012 (2015)]
- ▶ Rewrite angular distribution to obtain 8 CP-asymmetric observables
- Analyse higher $K\pi$ states
- \blacktriangleright dB/dq² measurement will also include a measurement of the S-wave in $K\pi$ system

New and updates of all analyses to 3 fb⁻¹

- Measurement of R_{K^*} , R_{ϕ}
- \blacktriangleright $B^+ \to \pi^+ \mu^+ \mu^-$, $\Lambda_b \to pK \mu^+ \mu^-$, angular analysis of $B \to K e^+ e^-$
- ► Measure phase difference between $B \to K^{(*)} \mu^+ \mu^-$ and $B \to J/\psi K^{(*)}$ amplitudes to understand potential QCD effects

Run-II

RunII data means quadrupling current dataset

- \blacktriangleright Experimental precision will start catching up with theory in most measurements
- **Large datasets open up precision erally** in $b \rightarrow d$ transitions (suppressed by $|V_{td}|^2/|V_{ts}|^2 \sim 25$ in SM) and tests of MFV
- Look for final states with τ 's (also with Run-I data)
	- \triangleright Lepton non-universality could point to LFV effects enhancing $B \to X_s \tau \mu$ e.g Glashow et al.

[arXiv:1411.0565]

 \blacktriangleright Perform inclusive measurements (?)

Flavour measurements are critical

- NP at $\Lambda_{NP} \sim 1$ TeV motivated to tame fine tuning in Higgs sector
- NP at $\Lambda_{NP} \sim 1$ TeV refuted by flavour measurements (pre LHC) \rightarrow CKM-like NP couplings (MFV)
- As LHC pushes Λ_{MP} to $>> 1$ TeV lift MFV constraints

 \triangleright increase chances to see NP in flavour

Backup