Cosmic-ray mass composition with LOFAR

Fundamental interactions and IAP meeting June 19 2015 - ULB Brussels

Stijn Buitink for the LOFAR Cosmic Ray KSP

A. Corstanje, J.E. Enriquez, H. Falcke, W. Frieswijk, J.R. Hörandel, M. Krause, A.Nelles, S. Thoudam, J.P. Rachen, P.Schellart, O.Scholten, S. ter Veen.

The all-particle cosmic ray spectrum

Particle acceleration in shock waves

supernovae, AGNs, GRBs, ...

Size

What Cosmic-Ray Masses tell us...

Electron/Muon ratio

particles on ground, sensitive to shower-to-shower fluctuations Kascade Grande, IceTop

A short history

- 1960s: First emission theory charge excess (Askaryan 1962) and geomagnetic radiation (Kahn & Lerche 1967)
- 1970s: Detections by multiple experiments. Efforts are abandoned due to inadequate hardware & theoretical uncertainties.
- 2002: Falcke & Gorham revisit theory (geosynchrotron approach). New interest.
- 2003+: LOPES (LOFAR prototype station) detects air shower in radio, other experiments follow
- Now: detailed understanding of radiation mechanism.
 Large experiments: LOFAR, AERA (Auger), Tunka-rex

LOFAR

AERA (Auger)

LOPES

CODALEMA

Tunka-REX

What drives the radio emission?

- <u>Earth magnetic field</u> electrons/positrons deflected E ~ dn_{ch}/dt
- <u>Charge excess</u> negative charge due to electron knockouts $E \sim d(n_e-n_p)/dt$
- <u>Non-unity index of refraction</u>
 Cherenkov-like effects
 ring structure possible

Coherent at 100 MHz (higher at Cherenkov angle!) wavelength > shower front size $P \sim n^2$

LOFAR low frequency array 10 - 250 MHz

Epoch of Reionization Radio Transients Astroparticle Physics Cosmic Magnetism Surveys Solar Physics

+ LORA LOFAR Radboud air shower array 20 scintillator stations (ex-KASCADE) 24 core stations 9 remote stations 8 international stations

CR observations

LOFAR is designed to support many different observation strategies

CR detection runs in the background during other observations

Air shower detection with LOFAR

Nanosecond timing precision

Pim Schellart et al., JCAP 10 14 (2014)

Interference: emission pattern = asymmetric

Charge excess fraction a based on polarization measurements

CoREAS simulations

vector sum of geomagnetic and charge excess component relativistic beaming

Cherenkov-like propagation effects $(n \neq I)$

CoREAS:

- plugin for CORSIKA
- calculates contribution from each particle
- based on first principles
 (no assumption on emission mechanism)

For each LOFAR shower:

- Reconstruct direction from antennas (plane wave)
 + energy estimate from particle array (LORA)
- Produce 50 p + 25 Fe showers CoREAS CORSIKA 7.4 (QGSJETII.04, Fluka, thinning 10⁻⁶)
- Calculate total power in 55 ns around peak emission
- GEANT4 LORA simulation: total deposited energy

Fit for each simulation:

Minimize χ^2 of radio and particle data simultaneously

4 fit parameters: core position radio power scale factor particle density scale factor ID 86129434

10-90 MHz

zenith 31 deg 336 antennas χ^2 / ndf = 1.02

SB et al. PRD 90 082003 (2014).

best fit out of 40 simulations

best fit out of 40 simulations

Lateral distribution radio signal

X_{max} reconstruction

protons penetrate deeper than iron nuclei

- Reconstruct depth of shower maximum: Xmax
- Jitter: other variations in shower development
- Correction for atmospheric variations using GDAS
- Resolution < 20 g/cm² !!

Unbinned analysis

Calculate a for each individual shower

Composition at 10¹⁷ - 10¹⁸ eV

Strange polarization patterns

what is going on??

Air showers in thunderstorms

- Regular: geomagnetic field induces traverse current (vxB direction)
- Strong E-field (E ~ cB): current direction changes
- Air showers in thunderstorms: different polarisation & different intensity pattern
- Allows remote sensing of thunderstorm fields!

Thunderstorm events

- What can we infer from two-layer model fits?
 Field direction, strength, altitudes?
- Do air showers influence the thunderstorm? deposit of large amounts of free electrons formation of streamers.... lightning initiation?
- LOFAR can image electrical processes in the thunderstorm with nanosecond precision!

Future of CR radio detection

SKA

1500

2000

LOFAR

Conclusions

- Air shower radio emission mechanism finally understood:
 - intensity profiles
 - wavefront shape
 - polarisation
 - Cherenkov rings at high frequency
- LOFAR can measure CR mass composition
 X_{max} resolution of < 20 g/cm²
 similar to fluorescence detection + higher duty cycle
- First composition results based on 100+ high-res reconstructions using full shape of X_{max} distribution
- Air showers in thunderstorm: remote sensing of electric fields, thunderstorm physics
- Future: CR-radio with Auger, SKA, lunar technique with LOFAR & SKA

Thanks