Searches for resonances

at the LHC, IAP Summer Solstice

Aidan Randle-Conde

Université Libre de Bruxelles (ULB)

Overview Introduction to ATLAS and CMS **Resonances and scope Dilepton resonances** t-tbar resonances Latest results: (t+X) Vector boson resonances atest results: Exotica at 2 TeV Summary (More results in backup!) 20:31:28 CEST

Aidan Randle-Conde (ULB), IAP Summer Solstice 2015 2015/06/19

ULB

The LHC experiments

• ATLAS and CMS are two general purpose detectors at the LHC

Resonances: scope

- A huge number of analyses fit into the topic "resonances"
- I can only cover a fraction of these!
- Mix of simple and complex final states —

Dilepton resonances

- Both ATLAS and CMS have searched for dilepton resonances:
 - Simple final states, low backgrounds.
 - Look for peak above smoothly falling background.
- Main selections:

ULB

PRD 90, 052005

JHEP04(2015)025

	ATLAS	CMS
ee	$E_{\rm T}$ > 40, 30 GeV $ \eta < 1.37$ or $1.52 < \eta < 2.47$	$E_{\rm T}$ > 35, 35 GeV $ \eta < 1.442$ or $1.56 < \eta < 2.5$
$\mu\mu$	$p_{\rm T} > 25, 25 { m ~GeV}$ $ \eta < 1.05$	$p_{\rm T} > 45, 45 {\rm ~GeV}$ η < 2.4 (η < 2.1 for triggering muon)

- Leading systematic uncertainties come from the PDFs for background modeling (more information in backup slides), and lepton scale factors (statistically limited at high transverse momentum.)
 - ATLAS: 4% for all channels.
 - CMS: 3% for dimuon, 4(6)% for dielectron barrel-barrel (barrel-endcap).
- (Ditau in backup- please ask if you want to see details.)

Dilepton resonances

• Both ATLAS and CMS have searched for dilepton resonances:

ATLAS: $m(Z'_{SSM}) > 2.90 \text{ TeV}$

ULB

CMS: $m(Z'_{SSM}) > 2.90 \text{ TeV}$

t-tbar resonances

- Both ATLAS and CMS search for t-tbar resonances.
- Many complex final states.
- Kinematic selections:

CMS-B2G-13-008

CERN-PH-EP-2015-090

	ATLAS	CMS
jets	anti-kT $\Delta R = 0.4$: $p_T(j) > 25$ GeV, $ \eta(j) < 2.5$ anti-kT $\Delta R = 1.0$: $p_T(j) > 300$ GeV, $ \eta(j) < 2.0$	$p_{\mathrm{T}}(j) > 100, 50 \text{ GeV } \eta(j) < 2.4$ Top-tagging
е	$E_{\rm T}(e)$ > 25 GeV $ \eta(e) < 1.37$ or $1.52 < \eta(e) < 2.47$	$ \eta(e) < 1.442 \text{ or } 1.56 < \eta(e) < 2.5$ $E_{\rm T}(e) > 85, 20 \text{ GeV}$ (depending on final state)
μ	$p_{\rm T}(\mu) > 25 \text{ GeV} \\ \eta(\mu) < 2.5$	$ \eta(\mu) < 2.1, 2.4$ $p_{\rm T}(\mu) > 85, 45, 20 {\rm GeV}$ (depending on final state)

- Dominant systematic uncertainties:
 - Jet energy scale, t-tbar normalisation, parton shower and fragmentation, luminosity.

t-tbar resonances

Top jet tagging

- Searches with boosted top quarks decaying hadronically can give rise to "top jets", with distinctive substructure.
- ATLAS and CMS have developed "top tagging" algorithms.
- Example from the CMS tagger:
 - $140 < m(j_t) < 250 \text{ GeV}$
 - $N_{\text{sub-jets}} > 2$
 - Minimum pairwise mass, $m_{min} > 50 \text{ GeV}$
- The "sub-jettiness" is defined as τ_N :

$$\tau_N = \sum_i p_T^i \min\{\Delta R_{1,i} \dots \Delta R_{N,i}\} / \sum_i p_T^i R_0$$

- R_0 is the characteristic jet radius.
- τ_N measures consistency with a top decay.
- τ_i / τ_j are discriminating variables, peaking near 1 for *i* sub-jets and 0 for *j* sub-jets.
- Further selections per analysis.
- Excellent discussion in the ATLAS paper: Eur. Phys. J. C (2015) 75:165

Latest results: $T \rightarrow tH$

- ATLAS and CMS investigate vector like T quarks decaying to a tH.
- The CMS search makes use of boosted *t*-jet reconstruction:
 - At least one *t*-jet with $p_{\rm T}$ > 200 GeV, that contains at least one *b* tagged jet.
 - At least one jet consistent with a scalar boson (two *b* tagged jets and $m(j_{CA}) > 60 \text{ GeV}$).
 - $H_{\rm T} > 720 \, {\rm GeV}$
- For ATLAS there are non trivial kinematic selections and multiple final states.
- Dominant systematic uncertainties:
 - QCD estimate
 - Flavour tagging
 - Jet energy corrections
 - H-tagging

• Limits: ATLAS: $m(T \rightarrow tH) > 855 \text{ GeV CMS}$: $m(T \rightarrow tH) > 745 \text{ GeV}$

Latest results: $LQ \rightarrow t\tau$

•	CMS investigate leptoquarks	arXiV: 1503.0904	49 Category A (B)
	decaying to a $t\tau$ final state.	7	$p_{\rm T}(\tau_{had}) > 20 (35) {\rm GeV}$
•	Two categories A (B) on right:	l had	$ \eta(\tau_{had}) < 2.1 \ (2.1)$
•	S_T is scalar sum of p_T in the event	• <i>e</i>	$E_{\rm T}(e)$ > 15 (35) GeV $ \eta(e) $ < 2.5 (2.1)
s per 100 GeV	$10^{4} \begin{bmatrix} CMS & \bullet \text{ Data} \\ Misidentified \mu \text{ or } \tau \\ Prompt-prompt (MC) \\ LQ (M = 400 \text{ GeV}) \\ 10^{2} \end{bmatrix} \begin{bmatrix} CMS & \bullet \text{ Data} \\ Categories A and B \\ -\bullet \text{ Observed limit} \\ Category A: forward \end{bmatrix} \begin{bmatrix} 10^{2} & \bullet \text{ Combination:} \\ Categories A and B \\ -\bullet \text{ Observed limit} \\ -\cdots \text{ Expected limit} \\ \hline \end{array}$	μ	$p_{\rm T}(\mu) > 25 (30) { m GeV}$ $ \eta(\mu) < 2.1 (2.1)$
Events	10 10 10 10 10 10 10 10 10 10	jet	$p_{\rm T}(j) > 40 (30) { m GeV}$ $ \eta(\mu) < 3.0 (2.5)$
-score		E_T^{Miss}	No selection (>50 GeV)
	$\begin{bmatrix} E \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ $	⁸⁰⁰ S _T	Optimised by mass $(S_{\rm T}>1000 {\rm ~GeV})$
•	Limits: $m(LQ \rightarrow t\tau) > 685 \text{ GeV}$		Optimised by mass
•	Dominant systematic uncertaintie	es: $p_{\rm T}(\tau_{had})$	$(p_{\rm T}(\tau_{\rm had})>20 {\rm ~GeV})$
	<i>t</i> reconstruction, pileup, background estimation.	Leptons	Same sign $\mu \tau_{had}$ ($\mu \tau_{had}$ or $e \tau_{had}$)

Latest results: $W' \rightarrow tb$

- ATLAS and CMS investigate W' boson decaying to tb final state.
- Dedicated algorithms for top-tagged jets and W' candidates.

- Dominant systematic uncertainties: t-tbar production, top-tagging.
- Limits:

ULB

ATLAS: $m(W')_{\text{right handed}} > 1.92 \text{ TeV}$ CMS: $m(W')_{\text{right handed}} > 2.15 \text{ TeV}$

ULBVector boson resonances

- Many final states (*lljj*, *llll*, *lllv*, *jjjj*, *lvjj*) to consider.
- Benchmark models include W', Randall-Sundrum Graviton (G_{RS}) , Techni-colour.
- Results are not necessarily easy to compare between experiments.
- Leading systematics are usually jet energy scale and jet energy resolution for hadronic final states, lepton scale factors and luminosity for purely leptonic states.
- I cannot cover everything, so I only show the limits!

Vector boson resonances

Experiment	Search	Limits	arXiV
ATLAS	$G_{RS} \rightarrow l\nu jj$	$m(G_{RS}) > 700 \text{ GeV}$	1503.04677
ATLAS	W'→lvjj	$m(W') > 1490 { m GeV}$	1503.04677
ATLAS	$W' \rightarrow WZ \rightarrow lljj$	m(W') > 1590 GeV	1409.6190
ATLAS	$G_{RS} \rightarrow WZ \rightarrow lljj$	$m(G_{RS}) > 740 \text{ GeV } @ \text{ k/MPl=1.0}$ $m(G_{RS}) > 540 \text{ GeV } @ \text{ k/MPl=0.5}$	1409.6190
ATLAS	$\alpha_T \rightarrow l \nu \gamma$	$m(\alpha_T) > 960 \text{ GeV}$	1407.8150
ATLAS	$a_T \rightarrow ll\gamma$	$m(\alpha_T) > 890 \text{ GeV}$	1407.8150
ATLAS	$W' \rightarrow WZ \rightarrow lll\nu$	m(W') > 1520 GeV	1406.4456
CMS	$W' \rightarrow WZ \rightarrow lll\nu$	m(W') > 1550	1407.3476
CMS	$\varrho_{TC} \rightarrow WZ \rightarrow lll \nu$	$m(\varrho_{TC}) > 1140 {\rm GeV}$	1407.3476
CMS	$WZ \rightarrow (l\nu/ll) + jj$ Graviton bulk	$\sigma(m(G_{RS}) = 600 \text{ GeV}) < 700 \text{ fb-1}$ $\sigma(m(G_{RS}) = 2500 \text{ GeV}) < 10 \text{ fb-1}$	1405.3447
CMS	$q^* \rightarrow q W \rightarrow jjjj$	$m(q^*) > 3200 \text{ GeV}$	1405.1994
CMS	$q^* \rightarrow qZ \rightarrow jjjj$	$m(q^*) > 2900 \text{ GeV}$	1405.1994
CMS	$W' \rightarrow WZ \rightarrow jjjj$	m(W') > 1700 GeV	1405.1994
CMS	$G_{RS} \rightarrow WW \rightarrow jjjjj$	$m(G_{RS}) > 1200 \text{ GeV}$	1405.1994

Aidan Randle-Conde (ULB), IAP Summer Solstice 2015 2015/06/19

ULB

Exotica at 2 TeV

arXiV: 1506.00962

- Both ATLAS and CMS have recently show results for the $VV \rightarrow jjjj$ final state, where V is a W or Z boson
- Both experiments show an excess around m(jjjj) = 2 TeV!
- First, results from ATLAS:
- Most significant excess is $\sim 3.5\sigma$ at m(VV) = 2 TeV.
- Jets are "groomed" to reduce QCD backgrounds.

Exotica at 2 TeV

CMS-EXO-013-008 CMS-EXO-013-009 CMS-EXO-012-024

- Equivalent analysis for CMS shows an excess of ~2σ with an RS graviton model (right).
- There are also excesses around 2 TeV in the dijet spectrum for $b^* \rightarrow bg$ (below left) and right handed W' in the context of W' $\rightarrow eN_e$ (below right).
- Interesting hints of new physics around 2 TeV showing up in several final states!

Summary

- LHC Run 1 has seen many very active searches for new resonances.
- ATLAS and CMS have probed new parameter space, setting unprecedented limits, in the range of TeV.
- The experiments have rich programs of physics and diverse searches.
- Tantalising hints of something around $M \sim 2 \text{ TeV}$

• Fingers crossed for LHC Run 2!

Run: 204153 Event: 35369265 2012-05-30 20:31:28 CEST

ULB PDFs and background uncertainties

- For many searches (dilepton, ditau, diphoton) the dominant systematic uncertainties come from PDF uncertainties on the background
 - Often vary widely as a function of mass
 - Hard to quantify without giving benchmarks
 - Good example from ATLAS dilepton search (arXiV: 1405.4123):

TABLE III. Summary of systematic uncertainties on the expected numbers of events at a dilepton mass of $m_{\ell\ell} = 2$ TeV, where N/A indicates that the uncertainty is not applicable. Uncertainties < 3% for all values of m_{ee} or $m_{\mu\mu}$ are neglected in the respective statistical analysis.

TABLE IV. Summary of systematic uncertainties on the ex-
pected numbers of events at a dilepton mass of $m_{\ell\ell} = 3$ TeV,
where N/A indicates that the uncertainty is not applicable.
Uncertainties $< 3\%$ for all values of m_{ee} or $m_{\mu\mu}$ are neglected
in the respective statistical analysis.

	Source $(m_{\ell\ell} = 2 \text{ TeV})$	Diele	ctrons	Dimuons		Source $(m_{\ell\ell} = 3 \text{ TeV})$	Diele	ctrons	Din	uons	_
		Signal	Backgr.	Signal	Backgr.		Signal	Backgr.	Signal	Backgr.	,
2 TeV	Normalization	4%	N/A	4%	N/A	Normalization	4%	N/A	4%	N/A	
	PDF variation	N/A	11%	N/A	12%	PDF variation	N/A	30%	N/A	17%	
	PDF choice	N/A	7%	N/A	6%	PDF choice	N/A	22%	N/A	12%	
	α_s	N/A	3%	N/A	3%	$lpha_s$	N/A	5%	N/A	4%	
	Electroweak corr.	N/A	2%	N/A	3%	Electroweak corr.	N/A	4%	N/A	3%	
	Photon-induced corr.	N/A	3%	N/A	3%	Photon-induced corr.	N/A	6%	N/A	4%	3 Iev
	Beam energy	< 1%	3%	< 1%	3%	Beam energy	< 1%	5%	< 1%	3%	
	Resolution	< 3%	< 3%	< 3%	3%	Resolution	< 3%	< 3%	< 3%	8%	
	Dijet and $W + jets$	N/A	5%	N/A	N/A	Dijet and $W + jets$	N/A	21%	N/A	N/A	_
	Total	4%	15%	4%	15%	Total	4%	44%	4%	23%	_

Diphoton resonances

- Both ATLAS and CMS investigate diphoton resonances.
- Simple final state.
- Kinematic selections:

ATLAS	CMS
$p_{\rm T} > 50 \; {\rm GeV}$ $ \eta < 1.37 \; {\rm or} \; 1.52 < \eta < 2.47$	$p_{\rm T} > 80 { m GeV}$ $ \eta < 1.4442$ $m(\gamma\gamma) > 300 { m GeV}$

 Dominant systematic uncertainties: PDFs for background modeling, photon reconstruction efficiency, luminosity.

Aidan Randle-Conde (ULB), IAP Summer Solstice 2015 2015/06/19

arXiV: 1505.04306

CMS-PAS-EXO-12-045

Diphoton resonances

Limits for $k/M_{Pl} = 0.1$: ATLAS: $m(G_{RS}) > 2.66$ TeV CMS: $m(G_{RS}) > 2.78$ TeV

Dijet resonances

- Both ATLAS and CMS investigate dijet resonances.
- Many possible interpretations, including excited quarks, W' and Z' bosons, black holes etc.

•	Kinematic selections:	Р	RD 91, 052007	PRD 91, 052009	
	ATLAS			CMS	
	$p_{\mathrm{T}}(j) > 50 \mathrm{GeV}$ $ \eta(j) < 2.8$		$p_{\rm T}(j) > 30 {\rm ~GeV}$ $ \eta(j) < 2.5$		
	$\frac{1}{2}(\eta(j)_{\text{leading}} - \eta(j)_{\text{subleading}}) < 0.6$ and $m(jj) > 250 \text{ GeV}$ to remove p_{T} bias		m(jj) > 890 GeV	to remove trigger bias	

- Dominant systematic uncertainties: jet energy scale, jet energy resolution, luminosity.
- (More final states in backup slides.)

Dijet resonances

ULB Further multi-jet resonances

 CMS also investigate pair produced resonances decaying to jets, and three-jet final states:

Phys. Lett. B 730 (2014) 193

Exclude top squark masses for decays to light (heavy) jets in range: 200 < m(jj) < 350 (385) GeV

Dominant uncertainties: Jet energy scale, resolution, initial and final state radiation, signal fits

Exclude gluino masses for decays to light (heavy) jets in range: 0 (200) < m(jjj) < 350 (835) GeV

arXiv:1412.7706

Ditau resonances

- Results from ATLAS and CMS
- ATLAS considers au_{had} - au_{had} and au_{had} - au_{lep} final states (au_{had} is a au jet)
- CMS consider τ_e - τ_μ final states
- Kinematic selections:

ULB

PRD 90, 052005

CMS-PAS-EXO-12-046

	ATLAS	CMS
$ au_{had}$	$p_{\rm T}(\tau_{had}) > 30 \text{ GeV}$ $ \eta(\tau_{had}) < 1.37 \text{ or } 1.52 < \eta(\tau_{had}) < 2.47$	
e	$E_{\rm T}(e)$ > 15 GeV $ \eta(e) < 1.37$ or $1.52 < \eta(e) < 2.47$	$E_{\rm T}(e) > 20 \ {\rm GeV} \\ \eta(e) < 1.442 \ {\rm or} \ 1.56 < \eta(e) < 2.5 \\$
μ	$p_{\rm T}(\mu) > 10 { m ~GeV}$ $ \eta(\mu) < 2.5$	$p_{\rm T}(\mu) > 20 { m ~GeV}$ $ \eta(\mu) < 2.1$

 Dominant systematic uncertainties: PDFs for background modeling, Signal efficiency for ATLAS, data driven background estimates for CMS.

Ditau resonances

• Exclusion limits:

ULB

ATLAS: $m(Z'_{SSM}) > 2.02 \text{ TeV}$

ULB Lepton flavour violating resonances

- Results from ATLAS and CMS
- ATLAS considers e- μ , e- τ , and μ - τ final states
- CMS consider *e*-μ final states
- Kinematic selections:

ATLAS	CMS
$p_{\rm T}(\tau_{had})$ > 25 GeV $ \eta(\tau_{had}) < 2.47$ Single track	
$E_{\rm T}(e)$ > 25 GeV	$E_{\rm T}(e) > 35 {\rm ~GeV}$
$ \eta(e) < 1.37$ or $1.52 < \eta(e) < 2.47$	$ \eta(e) < 1.442 {\rm ~or~} 1.56 < \eta(e) < 2.5$
$p_{\mathrm{T}}(\mu) > 25 \; \mathrm{GeV}$	$p_{\rm T}(\mu) > 45 { m ~GeV}$
$ \eta(\mu) < 2.4$	$ \eta(\mu) < 2.1$

 Dominant systematics: Acceptance and efficiency, 3-6% for ATLAS, ~5% for CMS.

arXiv:1503.054420

arXiv:1504.055115

ULB Lepton flavour violating resonances

• ATLAS investigates $e\mu$, $e\tau$, $\mu\tau$ final states.

ULB Lepton flavour violating resonances

Limit: $m(\tilde{\nu}_{\tau}) > 2.1 \text{ TeV}$