Exploring the Three-Dimensional Structure of the Nucleon with Quantum Chromodynamics

Cristian Pisano

The Summer Solstice Meeting of the Fundamental Interactions and IAP Network

Brussels, 19 June 2015

Fonds Wetenschappelijk Onderzoek Vlaanderen Opening new horizons

Contents

Outline

- ► Hadronic collisions at high energy in QCD
- Transverse momentum dependent parton distributions
- ► Linear polarization of gluons inside protons at the LHC:
 - Inclusive H-boson production
 - Inclusive heavy quarkonium production
 - H+jet production
- Conclusions

QCD Description of Proton-Proton Collisions

Scattering processes at high energy scales $Q \gg M_p$ (proton mass) provide important information on the internal structure of hadrons

Study based on fundamental properties and concepts of QCD

- Confinement: fundamental building blocks of QCD-quarks and gluons (partons)-do not exist as free particles
- Running coupling: the strong coupling α_s changes with the characteristic energy
- Asymptotic freedom: at small distance the quarks and gluons are (almost) free particles: perturbative approach is applicable

Factorization Theorems

Enable the separation of large (essentially nonperturbative) and small-distance (perturbative hard scattering matrix elements) contributions

Cross section for the process $A(P_1) + B(P_2) \rightarrow C(K_1) + D(K_2) + X$:

$$\sigma \sim \Phi_{a} \otimes \Phi_{b} \otimes |\mathcal{H}_{ab
ightarrow cd}|^{2} \otimes \Delta_{c} \otimes \Delta_{d}$$

 Δ (k;P_h,S_h)

- ▶ *H* : calculable partonic subprocess $a(p_1) + b(p_2) \rightarrow c(k_1) + d(k_2)$
- \blacktriangleright Parton correlators Φ and Δ describe soft parton \leftrightarrow hadron transitions

k

Collinear Factorization

- It describes inclusive processes: one or less hadron detected; e.g., DIS, electron-positrion annihilation into hadrons
- Correlator parametrized in terms of Parton Distribution Functions (PDFs): depend on long. momentum fraction x and a hard scale

$$A(P) \rightarrow a(p) + X: \underbrace{\begin{array}{c} p \uparrow \downarrow \\ \hline p \\ \hline \end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \\ \hline \end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \\ \hline \end{array}}_{p} \\ f_{1} = \underbrace{\begin{array}{c} \bullet \\ \bullet \\ \hline \end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \\ \hline \end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \end{array}}_{p} \underbrace{\end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \end{array}}_{p} \underbrace{\end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \end{array}}_{p} \underbrace{\end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \end{array}}_{p} \underbrace{\end{array}}_{p} \underbrace{\begin{array}{c} f_{1} \end{array}}_{p} \underbrace{\end{array}}_{p} \underbrace{\end{array}}_{p} \underbrace{\end{array}}_{p} \underbrace{\end{array}}_{p} \underbrace{\end{array}}_{p} \underbrace{$$

 Longitudinal momenta of the partons are intrinsic, Transverse momenta can be created by perturbative radiation (parton showers)

TMD Factorization

The one-dimensional picture of the proton provided by PDFs is not always satisfactory: a more complete description involving also transverse degrees of freedom (in spin and momentum) is nedeed

- Transverse momentum dependent (TMD) factorization: describes Semi-inclusive processes: two or more hadrons in the initial or final state detected; e.g. Drell-Yan, SIDIS, hadron-hadron to jets, *H*-boson and heavy-flavor production
- It provides a unifying QCD-based framework with both mechanisms of the transverse-momentum creation taken into account: intrinsic (essentially non-perturbative) and perturbative radiation
- ► TMD-PDFs depend also on the partonic transverse momentum **p**_T:

$$f_1^g(x) \longrightarrow f_1^g(x, \boldsymbol{p}_T^2), \dots$$

TMD-PDFs (or TMDs)

Our research is focussed on the QCD study of the three-dimensional PDFs, which contain information about the intrinsic longitudinal and two-dimensional transverse momenta of quarks and gluons

The are 16 TMDs (many more than collinear PDFs!): more detailed information on the intrinsic structure of the proton

Properties of (TMD-)PDFs

Both collinear and TMD-PDFs must be

- gauge-invariant
- universal
- renormalizable

Other important features:

- Wilson lines: save gauge invariance; jeopardise universality; complicate renormalizability
- Factorisation scale is arbitrary: transition from one scale to another (different experiments have different characteristic scales) by means of evolution equations
- TMD Evolution: differs from DGLAP, BFKL, CCFM; development of dedicated Monte-Carlo needed [in progress]

Experimental facilities

TMDs are, or will be, under active experimental investigation at

- ► COMPASS (CERN): µp collisions with polarized protons
- ▶ RHIC (BNL): pp collisions (both proton can be polarized)
- Jefferson Lab (USA): *ep* scattering; one third of approved experiments for 12 GeV Upgrade are devoted to the 3D structure of the nucleon (TMDs and GPDs)
- Electron-Ion Collider (USA): large-x regime, high luminosity, broad TMD program; spin effects

In the TMD approach, partons can be polarized even if the parent hadron is unpolarized

 Even the LHC can be viewed as polarized gluon collider (e.g. *H*-boson and heavy quark production in unp. *pp* collisions, test resummation algorithms)

Gluon correlator

The gluon correlator describes the hadron \rightarrow gluon transition

Gluon momentum $p = x P + p_T + p^- n$, with $n^2 = 0$ and $n \cdot P = 1$ transverse projector: $g_T^{\alpha\beta} \equiv g^{\alpha\beta} - P^{\alpha}n^{\beta} - n^{\alpha}P^{\beta}$

Definition for an unpolarized hadron, in terms of QCD operators on the light front (LF) $\xi \cdot n = 0$ [*U*, *U*': process dependent Wilson lines]:

$$\Phi_{g}^{\mu\nu}(x,\boldsymbol{p}_{T}) \equiv \Gamma^{\mu\nu} = \frac{n_{\rho} n_{\sigma}}{(\rho \cdot n)^{2}} \int \frac{\mathrm{d}(\xi \cdot P) \,\mathrm{d}^{2}\xi_{T}}{(2\pi)^{3}} \, e^{i\rho \cdot \xi} \left\langle P \right| \mathrm{Tr} \left[F^{\mu\rho}(0) \, U_{[0,\xi]} F^{\nu\sigma}(\xi) \, U_{[\xi,0]}^{\prime} \right] \left| P \right\rangle \right]_{\mathsf{LF}}$$

Mulders, Rodrigues, PRD 63 (2001) 094021

Gluon correlator

At "Leading Twist" and omitting Wilson lines:

$$\Phi_{g}^{\mu\nu}(x,p_{T};P) = \frac{1}{2x} \left\{ -g_{T}^{\mu\nu} f_{1}^{g} + \left(\frac{p_{T}^{\mu} p_{T}^{\nu}}{M_{h}^{2}} + g_{T}^{\mu\nu} \frac{p_{T}^{2}}{2M_{h}^{2}} \right) h_{1}^{\perp g} \right\}$$

- ► $f_1^g(x, p_T^2)$ unpolarized TMD gluon distribution; $p_T^2 = -p_T^2$
- ► $h_1^{\perp g}(x, p_T^2)$ distribution of linearly pol. gluons in an unp. hadron Mulders, Rodrigues, PRD 63 (2001) 094021

 $h_1^{\perp g}$ is a *T*-even, helicity-flip distribution, and a rank-2 tensor in p_T $h_1^{\perp g}(x, \mathbf{p}_T^2) \neq 0$ in the absence of ISI or FSI, but, as any TMD, it will receive contributions from ISI/FSI \longrightarrow it can be nonuniversal

Visualization of the gluon polarization

Transverse momentum plane. $h_1^{\perp g}$ is taken to be a Gaussian

The ellipsoid axis lengths are proportional to the probability of finding a gluon with a linear polarization in that direction

The function $h_1^{\perp g}$: phenomenology

No experimental studies of the function $h_1^{\perp g}$ have been performed

Measurements of the cos 2\u03c6 azimuthal asymmetries in heavy quark and jet pair production in ep collisions (EIC, LHeC)

$$\mathcal{A}_{2\phi} \sim \cos 2\phi \ h_1^{\perp g}$$

Boer, Brodsky, Mulders, CP, PRL 106 (2011) 132001 CP, Boer, Brodsky, Mulders, Buffing, JHEP 1310 (2013) 024

► Asymmetries in $p p \rightarrow \gamma \gamma X$ or $p p \rightarrow J/\psi \gamma X$ (RHIC, LHC) $\mathcal{A}_{2\phi} \sim \cos 2\phi f_1^g \otimes h_1^{\perp g}$ $\mathcal{A}_{4\phi} \sim \cos 4\phi h_1^{\perp g} \otimes h_1^{\perp g}$

> Qiu, Schlegel, Vogelsang, PRL 107 (2011) 062001 den Dunnen, Lansberg, CP, Schlegel, PRL 112 (2014) 212001

$$h_1^{\perp\,g}$$
 in $pp o H\,X$

H boson production happens mainly via $gg \rightarrow H$

Pol. gluons affect the H transverse spectrum at NNLO pQCD

Catani, Grazzini, NPB 845 (2011) 297

The nonperturbative distribution can be present at tree level and would contribute to H production at low q_T

Boer, den Dunnen, CP, Schlegel, Vogelsang, PRL 108 (2012) 032002 Echevarria, Kasemets, Mulders, CP, arXiv:1502.05354

Linear polarization of gluons

Transverse spectrum of the H boson

$$\frac{1}{\sigma} \frac{d\sigma}{d\boldsymbol{q}_T^2} \propto 1 + R_0(\boldsymbol{q}_T^2) \qquad R_0 = \frac{h_1^{\perp g} \otimes h_1^{\perp g}}{f_1^g \otimes f_1^g} \qquad |h_1^{\perp g}(x, \boldsymbol{p}_T^2)| \leq \frac{2M_\rho^2}{\boldsymbol{p}_T^2} f_1^g(x, \boldsymbol{p}_T^2)$$

Gaussian model for both f_1^g and $h_1^{\perp g}$:

15/28

Transverse spectra of C-even quarkonia η_Q and $\overline{\chi_Q}$ (Q = c, b)

Effects of $h_1^{\perp g}$ on higher angular momentum states are suppressed

H+jet production

Motivations: azimuthal asymmetries can be defined $[\neq pp \rightarrow HX]$ study of the TMD evolution by tuning the hard scale Nonuniversality and factorization breaking effects Boer, CP, PRD 91 (2015) 074024

TMD Master Formula

$$d\sigma = \frac{1}{2s} \frac{\mathrm{d}^{3} \mathcal{K}_{H}}{(2\pi)^{3} 2 \mathcal{K}_{H}^{0}} \frac{\mathrm{d}^{3} \mathcal{K}_{j}}{(2\pi)^{3} 2 \mathcal{K}_{j}^{0}} \sum_{a,b,c} \int \mathrm{d}x_{a} \,\mathrm{d}x_{b} \,\mathrm{d}^{2} \boldsymbol{p}_{aT} \,\mathrm{d}^{2} \boldsymbol{p}_{bT} (2\pi)^{4} \\ \times \delta^{4}(\boldsymbol{p}_{a} + \boldsymbol{p}_{b} - \boldsymbol{q}) \,\mathrm{Tr} \left\{ \Phi_{a}(x_{a}, \boldsymbol{p}_{aT}) \Phi_{b}(x_{b}, \boldsymbol{p}_{bT}) \left| \mathcal{M}^{ab \to Hc} \right|^{2} \right\}$$

H boson and jet almost back to back in the \perp plane: $|\boldsymbol{q}_T| \ll |\boldsymbol{K}_{\perp}|$ $\boldsymbol{q}_T = \boldsymbol{K}_{HT} + \boldsymbol{K}_{jT}, \qquad \boldsymbol{K}_{\perp} = (\boldsymbol{K}_{HT} - \boldsymbol{K}_{jT})/2$

Feynman diagrams

At LO in pQCD the partonic subprocesses that contribute are

Quark masses taken to be zero, except for $M_t \rightarrow \infty$ Kauffman, Desai, Risal, PRD 55 (1997) 4005

No indications that TMD factorization can be broken due to color entanglement Rogers, Mulders, PRD 81 (2010) 094006

Angular structure of the cross section

Focus on $gg \rightarrow Hg$ (dominant at the LHC). In the hadronic c.m.s.:

 $\boldsymbol{q}_{T} = |\boldsymbol{q}_{T}|(\cos \phi_{T}, \sin \phi_{T}) \quad \boldsymbol{K}_{\perp} = |\boldsymbol{K}_{\perp}|(\cos \phi_{\perp}, \sin \phi_{\perp}) \quad \phi \equiv \phi_{T} - \phi_{\perp}$

$$\mathrm{d}\sigma \equiv \frac{\mathrm{d}\sigma}{\mathrm{d}y_{H}\,\mathrm{d}y_{j}\,\mathrm{d}^{2}\boldsymbol{K}_{\perp}\,\mathrm{d}^{2}\boldsymbol{q}_{T}} \qquad \frac{\mathrm{d}\sigma}{\sigma} \equiv \frac{\mathrm{d}\sigma}{\int_{0}^{q_{T_{\mathrm{max}}}^{2}}\mathrm{d}\boldsymbol{q}_{T}^{2}\int_{0}^{2\pi}\mathrm{d}\phi\,\mathrm{d}\sigma}$$

Normalized cross section for $p p \rightarrow H \operatorname{jet} X$

 $\frac{\mathrm{d}\sigma}{\sigma} = \frac{1}{2\pi} \sigma_0(\boldsymbol{q}_T^2) \left[1 + R_0(\boldsymbol{q}_T^2) + R_2(\boldsymbol{q}_T^2) \cos 2\phi + R_4(\boldsymbol{q}_T^2) \cos 4\phi \right]$

$$\sigma_0(\boldsymbol{q}_T^2) \equiv \frac{f_1^g \otimes f_1^g}{\int_0^{q_{T_{\text{max}}}^2} \mathrm{d}\boldsymbol{q}_T^2 f_1^g \otimes f_1^g}$$

TMD observables

The three contributions can be isolated by defining the observables

$$\langle \cos n\phi \rangle_{q_T} \equiv \frac{\int_0^{2\pi} \mathrm{d}\phi \, \cos n \, \phi \, \mathrm{d}\sigma}{\mathrm{d}\sigma} \qquad (n=0,2,4)$$

such that

$$\langle \cos n\phi \rangle = \int_0^{q_{T_{\max}}^2} \mathrm{d}\boldsymbol{q}_T^2 \langle \cos n\phi \rangle_{q_T}$$

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}^2 q_T} \equiv \langle 1 \rangle_{q_T} \implies 1 + R_0 \propto f_1^g \otimes f_1^g + h_1^{\perp g} \otimes h_1^{\perp g}$$
$$\langle \cos 2\phi \rangle_{q_T} \implies R_2 \propto f_1^g \otimes h_1^{\perp g}$$
$$\langle \cos 4\phi \rangle_{q_T} \implies R_4 \propto h_1^{\perp g} \otimes h_1^{\perp g}$$

Models for the TMD gluon distributions

f_1^g : Gaussian + tail

$$f_1^g(x, \boldsymbol{p}_T^2) = f_1^g(x) \frac{R^2}{2\pi} \frac{1}{1 + \boldsymbol{p}_T^2 R^2} \qquad R = 2 \text{ GeV}^{-1}$$

 $h_1^{\perp g}$: Maximal polarization and Gaussian + tail

$$h_1^{\perp g}(x, \boldsymbol{p}_T^2) = \frac{2M_p^2}{\boldsymbol{p}_T^2} f_1^g(x, \boldsymbol{p}_T^2) \qquad [max \ pol.]$$

$$h_1^{\perp g}(x, \boldsymbol{p}_T^2) = 2f_1^g(x) \frac{M_p^2 R_h^4}{2\pi} \frac{1}{(1 + \boldsymbol{p}_T^2 R_h^2)^2} \qquad R_h = \frac{3}{2}R$$

Boer, den Dunnen, NPB 886 (2014) 421

q_T -distribution

Configuration in which the H and the jet have same rapidities

Effects largest at small q_T (hard to measure), but model dependent!

Azimuthal $\cos 2\phi$ asymmetries

Sensitive to the sign of $h_1^{\perp g}$: $\langle \cos 2\phi \rangle_{q_T} < 0 \implies h_1^{\perp g} > 0$

 $\langle \cos 2 \phi
angle pprox 12$ % at ${\it K}_{ot} = 100$ GeV

 $q_{T \max} = M_H/2$

Azimuthal $\cos 4\phi$ asymmetries

 $q_{T\,{
m max}}=M_{H}/2$ $\langle\cos4\phi
anglepprox0.1-0.2\%$ at ${\cal K}_{\perp}=100$ GeV

Gaussian model for the unpolarized TMDs

 $q_{T\max}=K_{\perp}/2$, $\langle\cos 2\phi
anglepprox 9\%$, $\langle\cos 4\phi
anglepprox 0.4\%$ at $K_{\perp}=100$ GeV

Conclusions

- h₁^{⊥g} leads to a modulation of the angular independent transverse momentum distribution of scalar (H, χ_{c0}, χ_{b0}) and pseudoscalar (η_c, η_b) particles
- ▶ $h_1^{\perp g}$ produces a modulation of the transverse spectrum of the *H*+jet pair and to azimuthal asymmetries in $pp \rightarrow H \text{ jet } X$
- First determination of $h_1^{\perp g}$ and f_1^g could come from $J/\psi(\Upsilon) + \gamma$ production at the running experiments at the LHC.

den Dunnen, Lansberg, CP, Schlegel, PRL 112 (2014) 212001

H and quarkonium production can be used to extract gluon TMDs and to study their process and scale dependences

QCD Theory in UAntwerpen

Regular Workshops 'Resummation, Evolution, Factorization' organized in collaboration with groups in **DESY**, Amsterdam, Oxford, Groningen:

- International Workshop REF2015, 02 08 Nov 2015, DESY, Hamburg, Germany [planned]
- International Meeting preREF2015, 01 03 Jun 2015, Amsterdam, The Netherlands
- International Workshop REF2014, 08 11 Dec 2014, Antwerp, Belgium
- ► TMD/uPDF Workshop, 23 24 Jun 2014, Antwerp, Belgium

QCD Theory in UAntwerpen

Books

- I.O. Cherednikov, P. Tales, F.F. Van der Veken "Parton Densities in Quantum Chromodynamics"
 De Gruyter Stud. Math. Phys., Berlin (2016) [in progress]
- I.O. Cherednikov, T. Mertens, F.F. Van der Veken "Wilson Lines in Quantum Field Theory"
 De Gruyter Stud. Math. Phys., Berlin (2014)

PhD Projects

- ▶ Pieter Taels [in progress, scheduled to 2017]
- Frederik Van der Veken "Wilson lines: Applications in QCD" [defended in 2014]
- ► Tom Mertens "Wilson loops: Mathematical foundations with applications in QCD" [defended in 2014]

MSc and BSc projects; regular articles; etc.

