

Highlights of Top Physics Results from CMS at LHC Run I

Efe Yazgan

Fundamental Interactions – be and IAP Meeting 19 June 2015 Université Libre de Bruxelles, Brussels, Belgium

The Top Quark

- The most massive particle known to date
- Lifetime < hadronization timescale
 - "Bare" quark properties
- The only elementary high mass particle that has color → EWK, QCD and flavor physics.
- The largest Yukawa coupling among the fermions
 - Special role in EWSB?
- Top quark and the scalar boson modify tree level SM processes through radiative corrections.

→ Electroweak fit before the scalar
 boson discovery consistent with
 measured mass within 1.3σ.
 → One of the most critical tests of
 the standard model!

Top Quark Mass and Existence

Initial BICEP2 results suggests Large Hubble rate $(H_1 \sim 10^{14-16} \text{ GeV} \sim \text{GUT} \text{ scale})$ during inflation \rightarrow large amplitude fluctuations of the scalar field \rightarrow vacuum decay.

Top Quark and QCD

- Top quark measurements
 - Test perturbative QCD
 - ◆ Understanding perturbative and non-perturbative QCD effects → ultimate precision in top quark mass and its interpretation.
- A selection of measurements from CMS

All public CMS results at: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Top Quark Decays

- Top quarks decay into a W boson and a b-quark ~100% of the time.
- tt decay channels are categorized by the W boson decay modes.

Top Quark Production

 tt pair production through QCD interactions: Dominant mechanism at hadron colliders.

At LO QCD \rightarrow O(α_s^2)

single top production through EWK interactions:

Top Quark Production

 Top pair cross sections at NNLO precision

$$\delta_{NNLO-theory} = 5.7\% > \delta_{e\mu} = 3.5\%$$

- Single top t-channel cross section at NNLO precision
 - theory uncertainty ~1%
 - Measurement uncertainty ~10%

 $\mu_f \sim Q \sim \sqrt{\hat{s}} \sim \sqrt{x_1 x_2 s}$

(Q: energy scale of the hard process)

 \rightarrow inputs: m_t , α_s , and PDFs

Fix m_t and PDF \rightarrow Determine α_s

- σ_{tt} (CMS; 7 TeV; dilepton) [JHEP, 11 (2012) 067]
- TOP++ 2.0 calculation (@ NNLO+NNLL) with $\alpha_s(M_z)$ scan.

Determination of α_s

- The first determination of $\alpha_s(m_z)$ from top quark production.
- The first $\alpha_s(m_z)$ result at a hadron collider at full NNLO QCD.

Fix $\alpha_s(m_z)$ and PDF \rightarrow Determine m_t^{pole}

Compare measured inclusive $t\overline{t}$ production cross-section to fully inclusive calculations at NNLO QCD that involve an unambiguous m_t .

$$m_t^{pole} = 176.7^{+3.0}_{-2.8} GeV$$
 \rightarrow First NNLO top mass.

Dominant systematic uncertainties: measured tt cross-section and PDF.

Constraints on the gluon PDF from Top Pair Production Czakon et al. arXiv:1303.7215

Relative reduction of error due to the inclusion of top data in the PDF fit.

- LHC top quark production cross section data already providing significant constraints on gluon PDF at large x.
- Significant impact on predictions for the scalar boson, and BSM predictions (dominated by gg processes).

Top Pair Differential Cross Sections

- Test various levels of pQCD approximations for top quark production
- Test and tune MC models
- Differential distributions from data are described reasonably well except top p_T.
- For all distributions trend is the same for 7 & 8 TeV and in lepton+jets and dilepton measurements.

tt + jets

- At the LHC, tt events are usually accompanied by additional hard jets from initial or final state QCD radiation (ISR/FSR).
 - Test higher-order QCD calculations (ISR parameters, QCD scales, ..)
 - Improve model choices and uncertainties for coming measurements.

- tt + 1 and 2 jet calculations are available at NLO.
- $t\bar{t} + jets: background to H \rightarrow b\bar{b},$

arXiv:1404.3171, CMS-PAS-TOP-12-041

- "Gap fraction": fraction of events w/o additional jets above a threshold.
 - Alternative way to investigate jet activity from QCD radiation.

Top Properties: Mass

- m_t: free parameter of QCD Lagrangian, i.e. not an observable → no unique interpretation.
 - Pole mass
 - "running mass" (m^{MSbar})

 $m_t^{pole} - m_t^{MSbar} \approx 10 \ GeV$ but can be related to each other:

$$m_{t}^{\overline{MS}}(\mu) = m_{t}^{pole} / \left(1 + \frac{4}{3} \frac{\alpha_{s}(m_{t}^{\overline{MS}}(\mu))}{\pi} + 8.2364 \left(\frac{\alpha_{s}(m_{t}^{\overline{MS}}(\mu))}{\pi} \right)^{2} + 73.638 \left(\frac{\alpha_{s}(m_{t}^{\overline{MS}}(\mu))}{\pi} \right)^{3} \right)$$
PLB482 (2000),99

- Monte Carlo Mass
 - No straightforward definition in *direct top mass measurements*
 - MEs at fixed order (LO or NLO) QCD + higher orders by parton showers

$$m_t^{MC} \neq m_t^{pole} \neq m_t^{MSbar} \neq m_t^{XX}$$

Top Quark Mass – Direct Measurements

- General features:
 - Assign each jet to a top decay product (constrained kinematic fits)
 - Calibration of the method
 - Determination of m^{MC} (and JES simultaneously) from data.

Main Challenges:

- \rightarrow Hadronization and other modeling uncertainties.
- → Precision only a few times Λ_{QCD} (*i.e. where the measurements and interpretations starts to become more difficult*).

Top Mass in the lepton+jets Final State at 8 TeV

CMS-PAS-TOP-14-001

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

Determine m_t simultaneously with jet energy scale factor in a joint likelihood fit.

Dependence of Top Mass on Event Kinematics CMS-PAS-TOP-14-001

- Interpretation of the top mass measurements is not straightforward for δ ~< 1 GeV ~Γ_t.
- Study model uncertainties.
 - some (non-)perturbative effects have different kinematic dependences.
 - Difficult to define a pole mass for an unstable and colored particle.

No mis-modeling of data.

- Study variables sensitive to
 - color connection,
 - ♦ ISR/FSR,
 - b-quark kinematics.

Top Properties from Production and Decay

And properties from electroweak single top production (mostly from t-channel)

Top Properties: tt Asymmetry

- bb asymmetry measurements consistent with LO predictions (LHCb arXiv:1406.4789).
- No new physics up to ~1 TeV.

Scenarios

Top Properties: tt Spin Correlation (I+jets) using the matrix Element Method

$$P(x_{i}|H) = \frac{1}{\sigma_{obs}} \int f_{PDF}(q_{1}) f_{PDF}(q_{2}) dq_{1} dq_{2} \frac{(2\pi)^{4} |M(y,H)|^{2}}{q_{1}q_{2}s} W(x,y) d\Phi_{6}$$

CMS-TOP-13-015

Calculate the likelihoods using *MadWeight*: P. Artoisenet, V. Lemaitre, F. Maltoni, and O. Mattelaer, "Automation of the matrix element reweighting method", *JHEP* **1012** (2010) 068

Hypothesis testing using sample likelihood ratios: SM vs uncorrelated top - anti-top quark.

Data agree with SM within 2.2 σ and uncorrelated tt within 2.9 σ

Template fit to event likelihood ratios: SM vs uncorrelated top - anti-top quark.

Most precise measurement of f in lepton+jets channel. Precision similar to dilepton channel.

Other Top Properties \rightarrow No New Physics

No FCNC: tqZ, tqg, tqy, tqH

Conclusions

- Top quark plays an important role in testing and understanding QCD, electro-weak, flavor and searches for new physics.
- tt cross section
 - SM predictions at NNLO. \rightarrow Experimental precision <5%.
- Top pair differential cross sections
 - NLO (+PS) MC predictions.
 - SM predictions at NNLO.
 - Simultaneous precise determination of top quark mass, strong coupling, and constraints on PDFs (esp. gluon PDFs at high x).
- Run-II measurements at ultimate precision require dedicated effort in top quark event modeling.

Conclusions

- Top quark mass
 - <1 GeV precision in a single measurement ~ world combination
 - Top mass related variables vs event kinematics to improve understanding of its interpretation.
 - Alternative top mass measurements to defeat systematic obstructions.

- Pin down top properties (both from tt and single-top) with increased precision and better methods.
 - Couplings, branching ratios, tt spin-correlation, asymmetries, polarizations, FCNC, ...
- LHC Run I set the stage for new physics searches and other precision measurements.

Lumi delivered to CMS by Sunday: ~ 6pb⁻¹.

• Already have thousands of top quark events from $\sqrt{s} = 13$ TeV collisions.

Backup

Analysis assumes that the SM is the fundamental theory with nothing beyond.

 \rightarrow One of the most critical tests of the standard model!

Differential Measurements in the single top t-channel

- Different implementations for b-quark modeling in the initial state for NLO generators.
- CompHep: combination of 2→2 and 2→3 processes based on the p_T spectrum of the second b quark (as an NLO approximation).
- Data distributions (corrected to parton level) are described well by both NLO and LO MCs + Pythia6.

Dependence of Top Mass on Event Kinematics

CMS preliminary, $\sqrt{s} = 7$ TeV, lepton+jets Observable Fig. m_t^{2D} - <m_t^{2D}> [GeV] $\Delta R_{q\overline{q}}$ Data (5.0 fb⁻¹) MG, Pythia Z2 $\Delta \phi_{q\overline{q}}$ MG, Pythia P11 color recon. MG, Pythia P11noCR MC@NLO, Herwig $p_{T,t,had}$ $\eta_{\rm t,had}$ 5 $H_{\rm T}$ $m_{t\bar{t}}$ **ISR/FSR** $p_{T,t\bar{t}}$ 8 Jet multiplicity data - MG Z2 [GeV] 9 P_{T,b,had} 10 11 $egin{array}{l} \eta_{ m b,had}\ \Delta R_{ m bar b}\ \Delta \phi_{ m bar b} \end{array}$ b-quark kin. 0 -5上 ō 200 250 300 50 100 150 p_{T,t,had} [GeV]

CMS-PAS-TOP-12-029

Alternative Top Quark Mass Measurements

Measurements with different/independent systematic uncertainties or with different m₊ definitions.

b-quark kinematics from J/ψ . \rightarrow precise fragmentation functions. Top mass from B-hadron lifetime.

- \rightarrow L_{xv} from tracks.
- \rightarrow No jet reconstruction.
- \rightarrow ttbar and top kinematics.
- + Mass from kinematic end-points (m_{lb}) .
- Alternative measurements compatible with standard measurements but not as precise yet.

Projections for Upgraded LHC

Basic assumptions

- improvements in experimental and theoretical systematic uncertainties believed to be possible with the large datasets of the future.
- No limiting irreducible uncertainties (none known currently).

Top Properties: tt+W/Z

ttZ → Direct measurement of top-Z coupling.
tt+Z/W important backgrounds to ttH.

$$\sigma_{8 TeV}(t\bar{t}Z) = \sigma_{8 TeV}(t\bar{t}W) \approx 200 \, fb$$

	<u>Significance</u>	
	Expected	Observed
ttΖ	5.73	6.44
ttW	3.54	4.81

+ Constraints on the axial and vector components of the top-Z coupling using EFT.

Top Properties: $tt+\gamma/H$

ttγ observed at 7 TeV (ATLAS) Cross section measured at 8 TeV (CMS):

$$R = \sigma_{\bar{t}t+\gamma} / \sigma_{\bar{t}t}$$

= (1.07 ± 0.07(stat.) ± 0.27(syst.)) · 10⁻²

$$\begin{aligned} \sigma_{t\bar{t}+\gamma} &= R \cdot \sigma_{\bar{t}t}^{\text{CMS}} \\ &= 2.4 \ \pm \ 0.2 \text{(stat.)} \ \pm \ 0.6 \text{(syst.) pb} \end{aligned}$$

Measuring top-Yukawa coupling: One of the most important Goals of LHC Run II.

3

Best fit σ/σ_{SM}

2

1

0

Top Properties: Branching Ratios

