$H \rightarrow \mu \tau$, $H \rightarrow e \tau$, $H \rightarrow e \mu$ searches with the CMS experiment

Maria Cepeda (CERN)

12/October/2015

Introduction

- With the discovery of the Brout–Englert–Higgs Boson by the ATLAS and CMS collaborations at the LHC, the quest for understanding its properties and decays started
- New physics could arise from unexpected corners
- Exploring the Flavor sector can hold surprises:
 - BSM models such as double Higgs models or extra dimensions allow lepton flavour violating decays of the boson (for instance, to a μτ pair)
 - Experimentally, non-LHC bounds on such decays are weak, allowing $Br(H \rightarrow \mu \tau, H \rightarrow e \tau) \sim 10\%$, well within the experimental reach of CMS
- This talks summarises the first direct search for a lepton flavour violating decay of the 125 GeV boson, performed with a data sample of 20 fb⁻¹ @ 8 TeV collected by the CMS experiment

.. and the discovery of a new particle

Is the new boson *really* the *minimal* SM Higgs?

- Is the *signal strength*, where seen, at the correct SM level?
- Is this a scalar, and not a pseudo-scalar or tensor?
- Does it *couple* to the SM particles at appropriate level?
 t,b,τ,μ
- Does it couple to itself ?
- Is this the *only* new non-vector boson, and not one of several?

CMS

Is the new boson *really* the *minimal* SM Higgs?

- Is the *signal strength*, where seen, at the correct SM level?
- Is this a scalar, and not a pseudo-scalar or tensor?
- Does it *couple* to the SM particles at appropriate level?
 t,b,τ,μ
- Does it couple to itself ?
- Is this the *only* new non-vector boson, and not one of several?
- Does it *couple* unusually ?
- Thanks to its mass of about 125 GeV we will be able to answer many of these questions experimentally [©]
 - Early answers from 2011-12 (Run-1)
 - Preparation for 2015-2017 (Run-2)

CMS HIG-14-009 arXiv:1412.8662

It couples like the SM Higgs Boson...

$$\lambda_{xy} = \kappa_x / \kappa_y, \ \kappa_{xy} = \kappa_x \kappa_y / \kappa_y$$

CMS HIG-14-009 arXiv:1412.8662

Is the new boson *really* the *minimal* SM Higgs?

- Is the *signal strength*, where seen, at the correct SM level?
- Is this a scalar, and not a pse alar or tensor?
- No surprises so far..... $\tau_{\rm rel}$ at appropriate level? t,b, τ,μ • Does it *c*
- Does it capie to itself ?
- Is this the only new non-vector boson, and not one of several?
- Does it *couple* unusually
- Thanks to its mass of about 125 GeV we will be able to answer many of these questions experimentally \odot
 - Early answers from 2011-12 (Run-1)
 - Preparation for 2015-2017 (Run-2)

CMS

Is the new boson *really* the *minimal* SM Higgs?

- Is the *signal strength*, where seen, at the correct SM level?
- Is this a *scalar*, and not a pseudo-scalar or tensor?
- Does it *couple* to the SM particles at appropriate level? t,b, τ , μ
- Does it *couple to itself* ?
- Is this the *only* new non-vector boson, and not one of several?
- Does it couple unusually (e.g. changing Lepton Flavor?)
- Thanks to its mass of about 125 GeV we will be able to answer many of these questions experimentally [©]
 - Early answers from 2011-12 (Run-1)
 - Preparation for 2015-2017 (Run-2)

WHY LFV?

15

- 12/October/2015 Maria Cepeda (CERN)

Higgs and Flavor

 In the SM, the Yukawa interactions are the only source of the fermion masses:

Both matrices are simultaneously diagonalizable →
 Lepton Flavor Violating Higgs decays are forbidden in the SM

$$Y = \begin{pmatrix} Y_{ee} & 0 & 0 \\ 0 & Y_{\mu\mu} & 0 \\ 0 & 0 & Y_{\tau\tau} \end{pmatrix}$$

Higgs and Flavor

 In the SM, the Yukawa interactions are the only source of the fermion masses:

Both matrices are simultaneously diagonalizable →
 Lepton Flavor Violating Higgs decays are forbidden in the SM

This is not necessarily true anymore in BSM models:

$$\mathcal{L}_{Y_i}' = Y_{ij} h f_L^i f_R^j + h.C$$

Flavor off-diagonalComplex (CP violating)

Channel	Coupling	Bound
$\mu ightarrow e \gamma$ (1)	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	$< 3.6 \times 10^{-6}$
$ au ightarrow e \gamma$ (2)	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.014
$ au ightarrow \mu \gamma$ (2)	$\sqrt{ Y_{\tau\mu} ^2 + Y_{\mu\tau} ^2}$	0.016

R. Harnik, J. Kopp, J. Zupan, arXiv:1209.1397

(1) PRL 107 171801 J. Adam et al. (MEG Collab.)

(2) PRL 104 021802 B. Aubert et al. (BABAR Collab.)

Channel	Coupling	Bound
$\mu ightarrow e \gamma$	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	$< 3.6 \times 10^{-6}$
$ au ightarrow e\gamma$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.014
$ au o \mu \gamma$	$\sqrt{ Y_{\tau\mu} ^2 + Y_{\mu\tau} ^2}$	0.016

The limits on the yukawa couplings can be translated into a limit on the Higgs Br:

$$BR(h \to \ell^{\alpha} \ell^{\beta}) = \frac{\Gamma(h \to \ell^{\alpha} \ell^{\beta})}{\Gamma(h \to \ell^{\alpha} \ell^{\beta}) + \Gamma_{SM}}$$

$$\Gamma(\mathrm{H} \to \ell^{\alpha} \ell^{\beta}) = \frac{m_{\mathrm{H}}}{8\pi} \left(|Y_{\ell^{\beta} \ell^{\alpha}}|^{2} + |Y_{\ell^{\alpha} \ell^{\beta}}|^{2} \right)$$

Br≤10% for LFV decays with a tau lepton not excluded!

19

CMS

R. Harnik, J. Kopp, J. Zupan, arXiv:1209.1397

CMS direct search for $H \rightarrow \mu \tau$, $H \rightarrow e \tau$, $H \rightarrow \mu e$

3 decay modes probed by CMS

Experimental techniques close to $H \rightarrow \tau \tau$

Can we bridge the gap to reach the 1% Br limit?

Experimental techniques close to $H \rightarrow \mu \mu$

Experimental techniques close to $H \rightarrow \tau \tau$

Can we bridge the gap to reach the 1% Br limit?

Lets start with the two decays involving a tau

Local significance larger than 3σ for mH values between 115 and 130 GeV

12/October/2015 Maria Cepeda (CERN)

CMS

Higgs Decay to Tau Pairs

- Excellent tau identification in CMS driven by the CMS SM H→ττ analysis
- Common building blocks: taus, leptons, jets allow us to profit from the modeling techniques and systematic studies developed in that context

\rightarrow VBF channels are the most sensitive

CMS-HIG-13-004 JHEP 05 (2014) 104

CMS. 19.7 fb⁻¹ at 8 TeV

Comparison of Kinematics $H \rightarrow \tau \tau$ 12/October/2015 Η→μτ VS. Т Н Η Maria Cepeda (CERN) τ μ

Exploit differences in event topology

- Harder P_{T} spectrum of muons
- Different angular correlations:
 - Electron/Tau_{had} Neutrinos → ~ Collinear
 - Muon Neutrinos \rightarrow ~ back to back

Comparison of Kinematics

Base selection in a snapshot : I

- Two channels:
 - μτ_{had} (triggered by single muon)
 - μτ_e(triggered by muon-electron cross triggers)
- Three categories
 - 0 and 1 jet (dominated by GGF)
 - 2 jets (dominated by VBF)

- 1 Good, isolated low p_T Electron OR 1 Good, isolated high p_T tau
- Opposite charge of the μτ_{had} / μe Pair
- Angular correlations used to enhance discrimination

CMS

Base selection in a snapshot : II

- Two channels:
 - eτ_{had} (triggered by single electron)
 - eτ_µ(triggered by muon-electron cross triggers)
- Three categories
 - 0 and 1 jet (dominated by GGF)
 - 2 jets (dominated by VBF)

- 1 Good, Isolated, High p_T Electron
- 1 Good, isolated low p_T **Muon** OR 1 Good, isolated high p_T tau
- Opposite charge of the **eτ_{had} / μe** Pair
- Angular correlations used to enhance discrimination

Mass Reconstruction

- We cannot reconstruct the full Higgs mass from the visible objects
- Using a collinear mass approximation we can improve mass resolution
 - → Assume neutrinos are collinear with the tau and define the visible fraction of tau momentum

• Like this, the full system mass becomes:

CMS

Mass Reconstruction

- We cannot reconstruct the full Higgs mass from the visible objects
- Using a collinear mass approximation we can improve mass resolution
 - → Assume neutrinos are collinear with the tau and define the visible fraction of tau momentum

Like this, the full system mass becomes:

CMS,

$Z \rightarrow \tau \tau$ Modeling

- Z→ττ is the dominant background in the μτ_e channel and significant in the μτ_{had} channel
- Very similar kinematics to the SM H→ττ
 & the signal
 - Overall 3% yield systematic uncertainty → from Z→ττ crosssection
 - Shape modeling using the embedded technique developed by H→ττ → exploits the 20 fb⁻¹ CMS Z→µµ dataset to model key issues like PU, MET → we rely on MC only for the tau decay

Jet \rightarrow Lepton misidentification

- Leptons can arise from mis-id'ed jets in W+Jets and QCD multijet events → Difficult to model on MC → will be estimated directly on data
- Measure the misidentification rate (fake rate) in an independent Zµµ sample:

 $f_{\mu} = \frac{N[Z(\mu\mu) + \mu(tight)]}{N[Z(\mu\mu) + \mu(loose)]}$

- 2 Apply this ratio of non-isolated to isolated muons to a data sample with anti-isolation required for one lepton that otherwise fulfills all selection criteria
- This technique can be applied to obtain Jet→Tau,
 Jet→Electron, Jet→Muon misidentified lepton contributions

Shape and yield prediction for fake lepton backgrounds (mainly W+Jets)

Jet \rightarrow Lepton misidentification

1 - Validation

(* for tau leptons, the anti isolated candidates of regions III and IV are substituted by loosely isolated candidates that fail to pass the strict criteria of regions I and II)

2 - Misidentified Lepton prediction

(* for tau leptons, the anti isolated candidates of regions III and IV are substituted by loosely isolated candidates that fail to pass the strict criteria of regions I and II)

CMS

Full Selection

→Greatly improve S/B by applying what we have learned about kinematics → higher electron/muon p_T, smart angular requirements

Differentiated by category to account for differences in sample composition in the 0-1-2 Jet bins

Variable		$H \rightarrow e \tau_{\mu}$			$H \rightarrow e \tau_h$		
		0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
p_T^e	(GeV)	> 50	> 40	> 40	> 45	> 35	> 35
p_T^{μ}	(GeV)	> 15	> 15	> 15	-	-	-
$p_T^{ au_h}$	(GeV)	-	-	-	> 30	> 40	> 30
$M_T(\mu)$	(GeV)	-	< 30	< 40	-	-	-
$M_T(\tau_h)$	(GeV)	-	-	-	< 70	-	< 50
$\Delta \phi_{\vec{p}_{T,e}-\vec{p}_{T,\tau_h}}$	(radians)	-	-	-	> 2.3	-	-
$\Delta \phi_{\vec{p}_{T,\mu}-\vec{E}_{\mathrm{T}}^{\mathrm{miss}}}$	(radians)	< 0.8	< 0.8	-	-	-	-
$\Delta \phi_{\vec{p}_{T,e}-\vec{p}_{T,\mu}}$	(radians)	-	> 0.5	-	-	-	-

$H \rightarrow e\tau$: Collinear Mass after selection

$H \rightarrow \mu \tau$: Collinear Mass after selection

$H \rightarrow \mu \tau$: Collinear Mass after selection

Signal extraction is performed through a simultaneous fit to these six collinear mass distributions

These fits will be used to derive a limit on the branching ratio of the Higgs to $e\tau$ and $\mu\tau$ (assuming the SM prediction for the crosssection of $M_{H}=125 \text{GeV}$)

 $M(\mu \tau_h)_{col}$ [GeV]

Systematic Uncertainties

- Background modeling (specially the fake background) is the lead experimental systematic uncertainty
 - Normalization uncertainty taken either from our data driven estimates or from CMS measurements and correlated between bins
 - Additional uncorrelated uncertainty include to account for potential control region biases
- The remaining experimental uncertainties (eg: lepton efficiencies) come from dedicated data studies performed centrally in CMS

Systematic Uncertainty		$H o \mu au_{m{e}}$			$H ightarrow \mu au_{had}$		
	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet	
electron trigger/ID/isolation	3%	3%	3%	-	-	-	
muon trigger/ID/isolation	2%	2%	2%	2%	2%	2%	
hadronic tau efficiency	-	-	-	9%	9%	9%	
luminosity	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%	
$Z \to \tau \tau$ background	3+3*%	3+5*%	3+10*%	3+5*%	3+5*%	3+10*%	
$Z \rightarrow \mu \mu, ee$ background	30%	30%	30%	30%	30%	30%	
misidentified muon and electron background	40%	40%	40%	-	-	-	
misidentified hadronic tau background	-	-	-	30+10*%	30%	30%	
WW, ZZ+jets background	15%	15%	15%	15%	15%	65%	
$t\bar{t}$ +jets background	10 %	10 %	10+10*%	10 %	10 %	10+33*%	
$W + \gamma$ background	100 %	100 %	100 %	-	-	-	
B-tagging veto	3%	3%	3%	-	-	-	
Single top production background	10 %	10 %	10 %	10 %	10 %	10%	

Systematic Uncertainties

 Additional experimental systematic uncertainties (effects on the mass resolution and shape):

Systematic	$H ightarrow \mu au_e$	$H ightarrow \mu au_{had}$
Hadronic Tau energy scale	-	3%
Jet Energy scale	3-7%	3-7%
Unclustered energy scale	10%	10 %
$Z(\tau \tau)$ Bias	100%	-

• Theoretical uncertainties:

Uncertainty	Gluon-Gluon Fusion		Vector Boson Fusion			
	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
parton density function	+9.7%	+9.7%	+9.7%	+ 3.6%	+3.6%	+3.6%
renormalization scale	+8 %	+10 %	-30%	+4 %	+1.5%	+2%
underlying event/parton shower	+4%	-5%	-10%	+10%	0%	-1%

Experimental techniques close to $H \rightarrow \mu \mu$

CMS

 $H\mu\mu \rightarrow$ at 95% CL $\sigma/\sigma_{SM} < 7.4$ (expected $6.5^{+2.8}_{-1.9}$) \rightarrow At 125 GeV, upper limit on the Br(Hµµ)< 0.0016 Hee→ Br(Hee)< 0.0019 (3.7x10⁵) times the SM!)

CMS-HIG-13-007 arXiv:1410.6679

Exclusion of universal coupling to leptons

CMS

Selection of Heµ events

- Very clean in comparison but targeting a very small Br! (10⁻⁸ already excluded)
- Backgrounds: TTbar/Diboson/DY tails
- **10 Categories** based on:
 - GGF vs VBF discrimination:
 - inclusive categories: 0-1-2 jets
 - VBF categories (tight/loose) following Hγγ
 - Barrel/Endcap leptons

- 1 Good, Isolated, High p_T Electron
- 1 Good, isolated, High p_T Muon
- Opposite charge of the μe Pair
- Veto on additional leptons
- Btagged Jets veto

Background composition

- Very clean search comparison
- non-LHC limits already constrain the Br tightly

124 <Meµ< 126 GeV

Jet category:	0-Jet	1-Jet	2-Jet	VBF
Drell-Yan	17.8 ± 4.2	4.1 ± 2.0	1.9 ± 1.4	0.0 ± 0.0
tĒ	1.4 ± 1.2	3.1 ± 1.8	14.1 ± 3.8	0.4 ± 0.6
t, Ī	0.0 ± 0.0	0.0 ± 0.0	2.7 ± 1.6	0.0 ± 0.0
EWK diboson	21.6 ± 4.7	2.3 ± 0.2	0.0 ± 0.0	0.0 ± 0.0
SM Higgs boson background	0.0 ± 0.0	0.1 ± 0.2	0.0 ± 0.0	0.0 ± 0.0
Sum of backgrounds	40.8 ± 6.4	9.6 ± 3.1	18.8 ± 4.3	0.5 ± 0.7
Observed	49	6	17	2
(Data-BG)/Uncert(BG)	1.3	-1.2	-0.4	2.2
LFV Higgs boson signal (B=1%)	21.2 ± 4.6	9.1 ± 3.0	2.6 ± 1.6	1.5 ± 1.2

non-LHC limits at Br<10⁻⁸ ...

49

CMS

12/October/2015 Maria Cepeda (CERN)

50

Signal Extraction

Signal Extraction through a fit to the invariant mass distribution: Background: Modelled by a combination of polynomials Signal: Modelled using two gaussians

Systematic Uncertainties: Heµ Experimental uncertainties Jet energy scale (inclusive categories) 0.4 Jet energy scale (VBF categories) 0.4

Jet energy scale (inclusive categories)	0.6% - 22.4 %				
Jet energy scale (VBF categories)	0.1% - 77.6 %				
Jet energy resolution (inclusive categories)	0.3% - 23.8 %				
Jet energy resolution (VBF categories)	8.4% - 93.7 %				
Luminosity	2.6%				
Trigger efficiency	1.0%				
Lepton ID	2.0%				
Leton energy scale	1.0%				
Di-lepton mass resolution	5.0%				
Pileup	0.7% - 2.3 %				
B-tag efficiency	0.05 % - 0.70 %				
Acceptance (PDF variations)	0.8 % - 5.1 %				
Theoretical uncertainties					
GGF cross section (QCD scale)	+7.2/-7.8%				
GGF cross section (PDF+ α_s)	+7.5/-6.9%				
VBF cross section (QCD scale)	$\pm 0.2\%$				
VBF cross section (PDF+ α_s)	+2.6/-2.8%				

CMS

RESULTS

95% CL Limits on the Branching Ratio

 $Br(H \rightarrow e\mu) < 0.36e-3$ (0.48e-3 expected)

 $Br(H \rightarrow e\tau) < 0.69\%$ (0.75% expected)

Br(H \rightarrow μτ)<1.51% (0.75% expected)

CMS

Best Fit to the Branching Ratio

- Small deviations per category (at most ~1sigma)
- Hemu and Heτ fit compatible with 0.

Back to the couplings...

Channel	Coupling	CMS Limit (95% CL)
$\mathbf{H} \rightarrow \mu e$	$\sqrt{ Y_{\mu e} ^2+ Y_{e\mu} ^2}$	$< 5.4 \times 10^{-4}$
${\rm H} \to e \tau$	$\sqrt{ Y_{e au} ^2+ Y_{ au e} ^2}$	$<2.4\times10^{-3}$
${\rm H} \rightarrow \mu \tau$	$\sqrt{ Y_{\mu au} ^2+ Y_{ au\mu} ^2}$	$< 3.6 \times 10^{-3}$

Already digging into the "natural" regime for μτ

60

CMS

CMS

ATLAS LFV Higgs search

• So far, only made public for the $\mu au_{
m h}$ channel

Upper limit for background hypothesis: BR($H \rightarrow \mu \tau$) <1.85% (1.24% exp)

1.3 σ excess corresponding to BR(H \rightarrow µ τ) = (0.77±0.62)%

2 categories: excess only observed in one of them

arXiv:1508.03372

SUMMARY

Summary

- The SM-like Brout-Englert-Higgs boson discovery opens a era of precision physics
 Comprehensive set of production and decay measurements performed
 - using the 7 and 8 TeV CMS data
 - \rightarrow Searches in rarer modes become sensitive enough for discovery
- CMS performed the first ever direct search for LFV Higgs decays, in the three decay channels: μτ, με, ετ
 - The CMS limits on the Br(H->Iτ) are one order of magnitude tighter than the preexisting non-LHC ones
 - The branching ratio for LFV decay to μτ is constrained to be less than 1.57 % (one order of magnitude better than previous experimental constraints). The expected BR limit was 0.75 %.
 - No deviation from the background-only hypothesis is observed for the eτ channel or μe channels

Summary

- The SM-like Brout-Englert-Higgs boson discovery opens a era of precision physics
 - → Comprehensive set of production and decay measurements performed using the 7 and 8 TeV CMS data
 - \rightarrow Searches in rarer modes become sensitive enough for discovery
- CMS performed the first ever direct search for LFV Higgs decays, in the three decay channels: μτ, με, ετ
 - The CMS limits on the Br(H->lτ) are one order of magnitude tighter than the preexisting non-LHC ones
 - The branching ratio for LFV decay to μτ is constrained to be less than 1.57 % (one order of magnitude better than previous experimental constraints). The expected BR limit was 0.75 %.
 - No deviation from the background-only hypothesis is observed for the eτ channel or μe channels

Run II has arrived!—> 13TeV searches for LFV decays of the Higgs have already started —> one of the key BSM Higgs Searches

Could new physics be hidden in the Higgs Flavor sector?

Thanks! 😳

CMS Results on LFV

- Search for lepton-flavour-violating decays of the Higgs boson (μτ): <u>http://cms-results.web.cern.ch/cms-results/public-</u> <u>results/publications/HIG-14-005/</u>
- Search for lepton-flavour-violating decays of the Higgs boson to eτ and eµ at 8 TeV : <u>http://cms-results.web.cern.ch/cms-</u> <u>results/public-results/preliminary-results/HIG-14-040/</u>

Its width is as the SM predicts...

- Γ_н SM = 4.7 MeV
- Γ_н<22 MeV (expected 33 MeV)
- Best Fit: $\Gamma_{\rm H} = 1.8^{+7.7}_{-1.8}$ MeV

CMS-HIG-14-002 Phys. Lett. B 736 (2014) 64

Its spin is like the SM Higgs Boson's one... 0.1

- Spin 1 excluded by observation of Hyy
- All tested hypotheses excluded at more than 99.9% CLS (HZZ/Hyy/ HWW)

seudoexperiments 0.08 0.06 0.04 0.02 -30 -20 -10 0 10 -2 × In(L_. / L_.)

CMS data

20

30

It couples like the SM Higgs

Symmetry between W and Z couplings

• All decay channels converge around SM expectation

arXiv:1412.8662

Maria Cepeda (CERN)

12/October/2015

It couples like the SM Higgs

Similar coupling to up-type vs down-type fermions

 Similar coupling to quarks and leptons

CMS HIG-14-009 arXiv:1412.8662

12/October/2015

Maria Cepeda (CERN)

70

 $\lambda_{xy} = \kappa_x / \kappa_y$

It couples like the SM Higgs

- New physics can show up in loop mediated processes
- BR(BSM)<0.32 if we fix all tree level couplings to the SM values
- BR(BSM)<0.58 for $k_v <=1$

CMS HIG-14-009 arXiv:1412.8662

12/October/2015 Maria Cepeda (CERN)

72

CMS

	Channel	Coupling	Bound
	$\mu \to e \gamma$	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	$< 3.6 \times 10^{-6}$
	$\mu \rightarrow 3e$	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$\lesssim 3.1\times 10^{-5}$
	electron $g-2$	$\operatorname{Re}(Y_{e\mu}Y_{\mu e})$	$-0.019 \dots 0.026$
	electron EDM	$ { m Im}(Y_{e\mu}Y_{\mu e}) $	$<9.8\times10^{-8}$
	$\mu \rightarrow e$ conversion	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	$<4.6\times10^{-5}$
	M - \bar{M} oscillations	$ Y_{\mu e} + Y_{e\mu}^* $	< 0.079
	$\tau \to e\gamma$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.014
	$\tau \to 3e$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	$\lesssim 0.12$
	electron $g-2$	$\operatorname{Re}(Y_{e\tau}Y_{\tau e})$	$[-2.1\dots 2.9] \times 10^{-3}$
	electron EDM	$ \mathrm{Im}(Y_{e au}Y_{ au e}) $	$< 1.1 \times 10^{-8}$
_	$\tau \to \mu \gamma$	$\sqrt{ Y_{\tau\mu} ^2 + Y_{\mu\tau} ^2}$	0.016
·	$ au ightarrow 3\mu$	$\sqrt{ Y_{\tau\mu}^2 + Y_{\mu\tau} ^2}$	$\lesssim 0.25$
	muon $g-2$	$\operatorname{Re}(Y_{\mu\tau}Y_{\tau\mu})$	$(2.7 \pm 0.75) \times 10^{-3}$
	muon EDM	$\operatorname{Im}(Y_{\mu au}Y_{ au\mu})$	-0.81.0
	$\mu \to e\gamma$	$(Y_{\tau\mu}Y_{\tau e} ^2 + Y_{\mu\tau}Y_{e\tau} ^2)^{1/4}$	$< 3.4 \times 10^{-4}$

R. Harnik, J. Kopp, J. Zupan,

arXiv:1209.1397

(and references therein)
From the PDG

$\Gamma(e^-\gamma)/\Gamma_{total}$	n family nu	nber conservatio	'n				Г ₁₇₈ /Г	·
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	СОМ	IMENT		
<3.3 × 10 ⁻⁸	90	AUBERT	10 B	BABR	8 516	fb ⁻¹ ,	$E_{\rm cm}^{ee}$ =10.6 GeV	
• • • We do not u	se the follow	ving data for ave	rages, f	fits, lin	nits, et	. • •	•	\mathbf{k}
${<}1.2 imes10^{-7}$	90	HAYASAKA	08	BELL	535	${\rm fb}^{-1}$,	$E_{\rm cm}^{ee} = 10.6 \; { m GeV}$	
$< 1.1 imes 10^{-7}$	90	AUBERT	06 C	BABR	232	fb^{-1} ,	$E_{\rm cm}^{ee}$ = 10.6 GeV	PRL 104 021802
< 3.9 $ imes$ 10 ⁻⁷	90	HAYASAKA	05	BELL	86.7	$^{\rm fb}^{-1}$, <i>E^{ee}</i> =10.6 GeV	
$\Gamma(\mu^-\gamma)/\Gamma_{total}$	n family nu	mber conservatio	n				Г ₁₇₉ /Г	(BABAR)
VALUE	CL%	DOCUMENT ID	 <u></u>	ECN	СОММЕ	ENT		
$< 4.4 \times 10^{-8}$	90	AUBERT	10B B	ABR	516 fb	⁻¹ , E	ee cm=10.6 GeV	
• • • We do not ι	ise the follo	wing data for ave	rages, f	fits, lim	nits, eta	c. • •	•	
$<$ 4.5 $\times 10^{-8}$	90	HAYASAKA	08 B	ELL	535 fb	⁻¹ , E	$cm^{ee} = 10.6 { m GeV}$	
$<$ 6.8 $ imes$ 10 $^{-8}$	90	AUBERT,B	05A B	ABR	232 fb	⁻¹ , E	$ee_{cm} = 10.6 \text{ GeV}$	
$<$ 3.1 $ imes$ 10 $^{-7}$	90	ABE	04B B	ELL	86.3 fb	o ^{−1} , Ł	$E_{cm}^{ee} = 10.6 { m GeV}$	
$\Gamma(e^-\gamma)/\Gamma_{total}$ Forbidden by	lepton fam	ily number conse	ervatior	ı.			Г <u>5</u> /	r
VALUE (units 10^{-11})	CL%	DOCUMEN	T ID	7	ECN	CHG	COMMENT	_
< 0.057	90	ADAM	J	13B S	PEC	+	MEG at PSI	
• • • We do not us	e the follow	ving data for ave	erages,	fits, liı	mits, e	tc. •	• •	PRI 107 171801
< 0.24	90	ADAM	J	11 S	PEC	+	MEG at PSI	
< 2.8	90	ADAM	1	10 S	PEC	+	MEG at PSI	J. Adam et al.
< 1.2	90	AHMED	(02 S	PEC	+	MEGA	(MEG Collab)
< 12	90	BROOKS	, c	99 S	PFC	+	LAMPE	

73

CMS,

Observed vs Expected Limits: μτ

Observed vs Expected Limits: et

Expected Limits							
	0 Jet	1 Jet	2 Jets				
	(%)	(%)	(%)				
$e\tau_{\mu}$	$< 1.63(^{+0.66}_{-0.44})$	$< 1.54(^{+0.71}_{-0.47})$	$< 1.59(^{+0.93}_{-0.55})$				
$e\tau_h$	$< 2.71^{+1.05}_{-0.75}$	$< 2.76^{+1.07}_{-0.77}$	$< 3.55^{+1.38}_{-0.99}$				
еτ		$< 0.75(^{+0.32}_{-0.22})$					
	Obs	served Limits					
	0 Jet	1 Jet	2 Jets				
	(%)	(%)	(%)				
$e\tau_{\mu}$	< 1.83	< 0.94	< 1.49				
$e\tau_h$	< 3.92	< 3.00	< 2.88				
еτ		< 0.69					
	Best Fit B	Branching Fraction	ons				
	0 Jet	1 Jet	2 Jets				
	(%)	(%)	(%)				
eτ _μ	$0.19^{+0.85}_{-0.85}$	$-1.04^{+0.70}_{-0.70}$	$-0.12^{+0.67}_{-0.58}$				
$e\tau_h$	$1.43^{+1.38}_{-1.33}$	$0.30^{+1.37}_{-1.38}$	$-0.91^{+1.54}_{-1.57}$				
еτ		$-0.10^{+0.37}_{-0.36}$					

Systematic Uncertainties: Ημτ

- Background modeling (specially the fake background) is the lead experimental systematic uncertainty
 - Normalization uncertainty taken either from our data driven estimates or from CMS measurements and correlated between bins
 - Additional uncorrelated uncertainty include to account for potential control region biases
- The remaining experimental uncertainties (eg: lepton efficiencies) come from dedicated data studies performed centrally in CMS

Systematic Uncertainty		$H ightarrow \mu \tau$	e	j	$H ightarrow \mu au_{ha}$	d
	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
electron trigger/ID/isolation	3%	3%	3%	-	-	-
muon trigger/ID/isolation	2%	2%	2%	2%	2%	2%
hadronic tau efficiency	-	-	-	9%	9%	9%
luminosity	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%
$Z \to \tau \tau$ background	3+3*%	3+5*%	3+10*%	3+5*%	3+5*%	3+10*%
$Z \rightarrow \mu \mu, ee$ background	30%	30%	30%	30%	30%	30%
misidentified muon and electron background	40%	40%	40%	-	-	-
misidentified hadronic tau background	-	-	-	30+10*%	30%	30%
WW, ZZ+jets background	15%	15%	15%	15%	15%	65%
$t\bar{t}$ +jets background	10 %	10 %	10+10*%	10 %	10 %	10+33*%
$W + \gamma$ background	100 %	100 %	100 %	-	-	-
B-tagging veto	3%	3%	3%	-	-	-
Single top production background	10 %	10 %	10 %	10 %	10 %	10%

Systematic Uncertainties: Ηετ

Systematic	$H \rightarrow e \tau_h$				$H \rightarrow e \tau_{\mu}$		
	0–jet	1–jet	2–jet	0–jet	1–jet	2–jet	
Electron Trigger/ID/Isolation	1	1	2	3	3	3	
Muon Trigger/ID/Isolation	-	-	-	2	2	2	
Hadronic tau efficiency	6.7	6.7	6.7	-	-	-	
Luminosity	2.6	2.6	2.6	2.6	2.6	2.6	
B-Tagging veto	-	-	-	3	3	3	
$Z \rightarrow \tau \tau$ background	$3 \oplus 5^*$	$3 \oplus 5^*$	$3 \oplus 10^*$	$3 \oplus 5^*$	$3 \oplus 5^*$	$3 \oplus 10^*$	
$Z \rightarrow \mu \mu$, ee background	30	30	30	30	30	30	
Reducible background	30	30	30	40	40	40	
Diboson background	15	15	15	15	15	15	
Top pair background	10	10	$10 \oplus 33^*$	10	10	$10 \oplus 10^*$	
Single top background	10	10	10	10	10	10	
Higgs boson GGF production	$9.7 \oplus 4 \oplus 8$						
Higgs boson VBF production			$3.6 \oplus 1$	$10 \oplus 4$			

Systematic Uncertainties: Ημτ/Ηετ

 Additional experimental systematic uncertainties (effects on the mass resolution and shape):

Systematic	$H ightarrow \mu au_e$	$H ightarrow \mu au_{had}$
Hadronic Tau energy scale	-	3%
Jet Energy scale	3-7%	3-7%
Unclustered energy scale	10%	10 %
$Z(\tau \tau)$ Bias	100%	_

• Theoretical uncertainties:

Uncertainty	Gluon-Gluon Fusion			Vector Boson Fusion			
	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet	
parton density function	+9.7%	+9.7%	+9.7%	+ 3.6%	+3.6%	+3.6%	
renormalization scale	+8%	+10~%	-30%	+4 %	+1.5%	+2%	
underlying event/parton shower	+4%	-5%	-10%	+10%	0%	-1%	

Systematic Uncertainties: Heµ

Experimental uncertainties						
Jet energy scale (inclusive categories)	0.6% - 22.4 %					
Jet energy scale (VBF categories)	0.1% - 77.6 %					
Jet energy resolution (inclusive categories)	0.3% - 23.8 %					
Jet energy resolution (VBF categories)	8.4% - 93.7 %					
Luminosity	2.6%					
Trigger efficiency	1.0%					
Lepton ID	2.0%					
Leton energy scale	1.0%					
Di-lepton mass resolution	5.0%					
Pileup	0.7% - 2.3 %					
B-tag efficiency	0.05 % - 0.70 %					
Acceptance (PDF variations)	0.8 % - 5.1 %					
Theoretical uncertainties						
GGF cross section (QCD scale)	+7.2/-7.8%					
GGF cross section (PDF+ α_s)	+7.5/-6.9%					
VBF cross section (QCD scale)	$\pm 0.2\%$					
VBF cross section (PDF+ α_s)	+2.6/-2.8%					

Yields $H \rightarrow \mu \tau$

Sample		$H \rightarrow \mu \tau_h$		$H \rightarrow \mu \tau_e$			
Sample	0-Jet	1-Jet	2-Jets	0-Jet	1-Jet	2-Jets	
misidentified leptons	1770 ± 530	377 ± 114	1.8 ± 1.0	42 ± 17	16 ± 7	1.1 ± 0.7	
$Z \rightarrow \tau \tau$	187 ± 10	59 ± 4	0.4 ± 0.2	65 ± 3	39 ± 2	1.3 ± 0.2	
ZZ, WW	46 ± 8	15 ± 3	0.2 ± 0.2	41 ± 7	22 ± 4	0.7 ± 0.2	
$W\gamma$			—	2 ± 2	2 ± 2		
$Z \rightarrow ee \text{ or } \mu\mu$	110 ± 23	20 ± 7	0.1 ± 0.1	1.6 ± 0.7	1.8 ± 0.8		
tī	2.2 ± 0.6	24 ± 3	0.9 ± 0.5	4.8 ± 0.7	30 ± 3	1.8 ± 0.4	
tī	2.2 ± 1.1	13 ± 3	0.5 ± 0.5	1.9 ± 0.2	6.8 ± 0.8	0.2 ± 0.1	
SM H background	7.1 ± 1.3	5.3 ± 0.8	1.6 ± 0.5	1.9 ± 0.3	1.6 ± 0.2	0.6 ± 0.1	
sum of backgrounds	2125 ± 530	513 ± 114	5.4 ± 1.4	160 ± 19	118 ± 9	5.6 ± 0.9	
LFV Higgs boson signal	66 ± 18	30 ± 8	2.9 ± 1.1	23 ± 6	13 ± 3	1.2 ± 0.3	
data	2147	511	10	180	128	6	

Yields $H \rightarrow e\tau$

	Jet category:	0-Jet	1-Jet	2-Jet
-	Misidentified leptons	85.2 ± 5.9	38.1±3.9	2.1 ± 0.7
)τ _μ	$Z \rightarrow ee, \mu\mu$	2.3 ± 0.6	$5.4 {\pm} 0.5$	-
	$Z \to \tau \tau$	84.7 ± 2.1	$113.3 {\pm} 4.2$	8.5 ± 0.6
	$t\bar{t}, t, \bar{t}$	13.8 ± 0.3	$69.4{\pm}2.3$	12.7 ± 0.8
	EWK diboson	83.0 ± 2.7	51.7 ± 2.0	$3.6 {\pm} 0.4$
Φ	$W\gamma, W\gamma *$	2.2 ± 1.0	1.2 ± 0.6	-
	SM Higgs boson background	2.3 ± 0.3	$3.6 {\pm} 0.4$	1.1 ± 0.2
	Sum of background	$273.5 {\pm} 6.1$	$282.0{\pm}6.0$	28.1 ± 1.3
-	LFV Higgs boson signal (BR=1%)	33.4 ± 2.3	23.2 ± 1.7	8.6 ± 1.4
-	Observed	286	268	33
-				
	Jet category:	0-Jet	1-Jet	2-Jet
	Misidentified leptons	3366 ± 25	223±11	$8.7{\pm}~2.23$
	$Z \rightarrow ee, \mu\mu$	714 ± 30	85 ± 4	$3.2{\pm}~0.25$
	$Z \rightarrow \tau \tau$	270 ± 10	32±3	$1.6{\pm}~0.30$
<u> </u>	$t\bar{t}, t, \bar{t}$	$10{\pm}2$	13 ± 2	0.5 ± 0.2
θτh	EWK diboson	53 ± 2	6 ± 1	0.3 ± 0.1
	SM Higgs boson background	12 ± 1	3±1	1.0 ± 0.1
	Sum of background	$4425{\pm}28$	363 ± 11	15.3 ± 2.3
	LFV Higgs boson signal (BR=1%)	88±6	22 ± 2	4.1 ± 0.7
	Observed	4438	375	13

Full Selection

- →Greatly improve S/B by applying what we have learned about kinematics → higher muon p_T, smart angular requirements
- Differentiated by category to account for differences in sample composition in the 0-1-2 Jet bins

Variable	$H ightarrow \mu au_e$			$H \rightarrow \mu \tau_h$		
[GeV]	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
$p_{\mathrm{T}}^{\mu} >$	50	45	25	45	35	30
$p_{\mathrm{T}}^{\mathrm{e}} >$	10	10	10			
$p_{\mathrm{T}}^{ au} >$				35	40	40
$M_{ m T}^{ m e} <$	65	65	25			
$M_{ m T}^{{ m }\mu}>$	50	40	15			
$M_{ m T}^{ au} <$				50	35	35
[radians]						
$\Delta \phi_{\vec{p}^{\mu}_{\mathrm{T}}-\vec{p}^{\tau_{\mathrm{h}}}_{\mathrm{T}}} >$				2.7		
$\Delta \phi_{ec{p}_{ extsf{r}}^{ extsf{e}} - ec{E}_{ extsf{r}}^{ extsf{miss}}} < 0$	0.5	0.5	0.3		—	
$\Delta \phi_{\vec{p}_{\mathrm{T}}^{\mathrm{e}}-\vec{p}_{\mathrm{T}}^{\mu}} >$	2.7	1.0				

Hµe: categories and background

Category		Number	Lepton $p_{\rm T}$	E_{T}^{miss}	Bitag
		of jets	(GeV)	(GeV)	D-tag
0	EB-MB	0	> 25	< 30	-
1	EB-MB	1	> 22	< 30	< 0.38
2	EB-MB	2	> 25	< 25	< 0.38, < 0.48
3	EB-ME	0	> 20	< 30	-
4	EB-ME	1	> 22	< 20	< 0.48
5	EB-ME	2	> 20	< 30	< 0.51, < 0.57
6	EE-(MB or ME)	0	> 20	< 30	-
7	EE-(MB or ME)	1	> 22	< 20	< 0.48
8	EE-(MB or ME)	2	> 20	< 30	< 0.51, < 0.57
			VBF		
9	Tight	2	> 22	< 30	< 0.58, < 0.244
10	Loose	2	> 22	< 25	< 0.62, < 0.30

Category	Selected function	Selected order	Bias
0	Polynomial	4	$10.8\pm1.0~\%$
1	Polynomial	4	$4.6\pm1.1~\%$
2	Power law	1	7.6 ± 1.0 %
3	Polynomial	4	4.8 ± 1.1 %
4	Exponential	1	$7.4\pm1.0~\%$
5	Exponential	1	$8.4\pm1.0~\%$
6	Polynomial	4	13.8 ± 1.4 %
7	Power law	1	12.6 ± 1.0 %
8	Polynomial	4	$7.7\pm1.1~\%$
9	Exponential	1	< 0.1 %
10	Exponential	1	< 0.1 %

85

CMS

The Compact Muon Solenoid

