Silicon Photomultiplier - characteristics and applications -

Nicoleta Dinu

Laboratoire de l'Accélérateur Linéaire, IN2P3, CNRS, Orsay, France Actually with ARTEMIS, CNRS & Observatoire Cote d'Azur, Nice, France

Seminar at IIHE, Brussels, 04.03.2016

OUTLINE

- PART A:
 - Silicon Photomultiplier (SiPM)
 - Short review of SiPM precursors: PIN, APD, GM-APD
 - SiPM design and physics principle
 - SiPM electrical and optical characteristics

• PART B:

- SiPM applications
 - Medical imaging: compact imaging gamma camera
 - How to select the most adapted SiPM for a given application??

PART A: Silicon Photomultiplier

Review of SiPM precursors (I)

GM-APD or SPAD

- V_{bias} > V_{BD} (V_{bias}-V_{BD} ~ few volts)
- Geiger-mode operation
- Can operate at single photon level

Geiger-Mode Avalanche Photodiode

The first single photon detectors operated in Geiger-mode

Avalanche process in silicon: studied more than 50 years and widely exploited, but not yet understood in details

S. Cova & al., Appl. Opt., Vol. 35, No 12 (1996) 1956

SiPM µcell – design and physics principle

- GM-APD (p-n junction) connected in series with quenching resistance R_Q
- GM-APD and R_Q on the same substrate

SiPM – design and physics principle

- Parallel array of μ -cells on the same substrate
 - \circ Each $\mu\text{-cell}$: GM-APD in series with R_Q

Nicoleta Dinu - Jaeger, LAL-ARTEMIS, CNRS, Brussels Seminar, 04.03.2016

Many SiPM producers over the world

SiPM sensors first commercially available in 2006

- B. Dolgoshein: "An advanced study of silicon photomultiplier", ICFA Bulletin, 2001
- C. Jackson, "Geiger-mode Avalanche Photodiodes", PhD Thesis, actually chief technology officer at SensL
- N. Dinu, C. Piemonte & al.: "Development of the first prototypes of SiPM at ITC-irst", Frontiers detectors for frontier physics, Elba, Italy, 2006
- Many research laboratories over the world contributed to this development
 - Interaction between producers and users was very productive

Single SiPM – few examples of design & packages

Arrays of SiPM – few examples of design & packages

SiPM characteristics from user/application point of view

Device parameters

- Photon detection efficiency
- Signal shape
 - Timing resolution
 - Count rate (linearity)
- Gain
- Dark count rate
 - Thermal rate
 - Afterpulses, cross-talk
- Temperature dependence of various parameters

System performance

- Breakdown voltage & operating bias
- Breakdown uniformity and temperature dependence

Photon detection efficiency $PDE = N_{pulses} / N_{photons} = QE \cdot P_{Geiger} \cdot \varepsilon_{geom}$

Parameters dependence of PDE

Examples of PDE recent improvements

SiPM pulse shape

- Close related to µcell operation and its equivalent circuit
 - Avalanche processes in semiconductors are studied in details since '60 for modeling micro-plasma instabilities
 - McIntyre JAP 32 (1961), McIntire IEEE TED (1973, Haitz JAP 35 (1964) and Ruegg IEEE TED 14 (1967)

ΔPM μcell equivalent circuit using simplified Haitz model:

- GM-APD diode in series with R_{O}
- GM-APD diode
 - capacitance C_D and its series resistance R_D
 - V_{BD} source simulates the breakdown point
 - Switch S : OFF denotes pre-avalanche state ($V_{bias} > V_{BD}$) but no avalanche takes place \Box

• Operation cycle:

I. Avalanche triggered by a carrier traversing the high field region (switch closed) \rightarrow short current spike (10⁻¹¹ s) with $I_{D_{max}} \sim (V_{BIAS} - V_{BD})/R_D \rightarrow C_D$ discharge from V_{BIAS} to V_{BD} through R_D with a time constant $\tau_{discharge} \sim R_D \times C_D$

t∩

time

- 2. Avalanche quenching \rightarrow current flows to the external circuit up to a value limited by $R_Q \rightarrow$ diode current I_D decreases bellow a critical value $I_{latch} \sim (V_{BIAS} V_{BD})/(R_Q + R_D)$ (I_{latch} limits the low values of R_Q to O(100 k Ω)
- 3. Diode recharge (switch open), C_D charge from V_{BD} to V_{BIAS} with a time constant $\tau_{recharge} \sim R_Q \times C_D$ (since $R_Q \gg R_D$, $\tau_{recharge} \gg \tau_{discharge}$

SiPM equivalent circuit is more complicated

SiPM eq. circuit connected to ext. circuit

Few more elements have to be added

- Parasitic capacitance of quench resistor C_Q (R_Q is integrated on the same silicon substrate as the diode)
- Parasitic capacitance of neighboring cells (SiPM is an array of GM-APDs)
- Parasitic grid capacitance (package, wire bonding etc)

SiPM μ cell eq. circuit based on Haitz model

R_o outside of diode area; no visible fast component

Normalized Amplitude

R_o overlapping the diode area; visible fast component

Signal shape and R_O vs. temperature

Examples of signal shape improvements

Each junction has a connection to a third electrode with a low capacitive coupling

SensL

SiPM timing resolution

- Time jitter between the true arrival time of the photon at the sensor and the instant when the output current pulse is recorded
- Two components :
 - fast component of gaussian shape with $\sigma O(100 \text{ ps})$
 - due to photons absorbed in the depletion region
 - its width depends on the statistical fluctuations of the avalanche build-up time (e.g. photon impact position \rightarrow cell size)
- slow component: minor non gaussian tail with time scale of O(ns)
 - due to minority carriers, photo-generated in the neutral regions beneath the depletion layer that reach the junction by diffusion (wavelength dependent)

Fast plastic scintillator (BC422 60×30×5mm³)

readout by 6 SiPMs

• Better resolution at higher ΔV (gain, PDE)

Saturated due to dark noise or afterpulsing

SiPM linearity/ saturation

- Good linearity as long as N_{photons} < N_{μcells}
 Main sources of non-linearity:
 - finite number of cells main contribution when $N_{photons} \sim O(N_{cells})$
 - recovery time (large number of photons arriving in a time interval shorter than recovery time)
 - afterpulses, cross-talk
 - drop of ΔV during the light pulse due to relevant signal current on external series resistance

20% deviation from linearity if 50% $\mu cells$ fired

$$N_{firedcells} = N_{total} \cdot \left(1 - e^{-\frac{N_{photon} \cdot PDE}{N_{total}}}\right)$$

- Need to choose the devices with cell density that meets the application requirements
- Rule of thumb for device choose:
 - Number of photons per μcell < I

Improvements to SiPM linearity – small μ cells size

- 10 μm cell pitch from Hamamatsu SiPM
 - Fill factor improved by metal quench resistor (MQR) 0
 - Thin MQR (transparent to light) over active area 0

KETEK

Active area: 2.2x2.2 mm²

cell size: 15x15 µm²

cells: ~ 21300

Fill factor = 48%

Avalanche region

Micro-wells for electron collection

b.

15 μm cell pitch from KETEK and AdvanSiD

FBK-AdvanSiD

- Micro-cells from Zecotek, Amplification tech
 - Up to 40000 cells/mm²

22

GAIN

Defined as the charge developed in one μ cell by a primary charge carrier:

- \bullet G increases linearly with V_{BIAS} at a given V_{BD}
 - G: $5x10^5 5x10^6 \Rightarrow$ simple read-out electronics required
- The slope of the linear fit of G v.s. $\Delta V \Rightarrow \mu cell$ diode capacitance
 - $C_{\mu cell}$: tens to hundreds of fF
- G and C_D increase with the μ cell geometrical dimensions
 - $C_D \simeq \epsilon_0 \epsilon_r S/d$; S μ cell junction surface; d μ cell depletion thickness

Gain vs. bias voltage vs. temperature

Gain variation with T is determined by V_{BD} variation with T

•Early devices (2007-2011)

- T in the range from -20°C to +20°C
 - dV_{BD}/dT (HPK) ~ 55-60 mV/°C
 - dG/dT ~ 2.7%/°C for $\Delta V=2V$

Present generation (2015):

- dV_{BD}/dT (HPK) ~ 55 mV/°C
- dV_{BD}/dT (KETEK) ~ 22 mV/°C
- dV_{BD}/dT (FBK) ~ 25 mV/°C
- dV_{BD}/dT (SensL) ~ 21.5 mV/°C
- Devices work at higher ΔV
- $dG/dT \le I\%/^{\circ}C$ for $\Delta V=5V$ 24

Better V_{BD} stability at low T

varying the doping concentration & thickness of epi layer

Gain vs. overvoltage vs temperature

25

Cemnerature

T = 45

T = 35

T = 25

T = 15

T = 5

T = -5

= -15

-25

= -35

= -45

T = -105

T = -115

T = -165

T = -175

Dark count rate (I)

- The number of pulses/s registered by the SiPM in the absence of the light
- It limits the SiPM performances (e.g. single photon detection, linearity, timing resolution)

CB

VB

• Three main contributions:

Primary pulses (uncorrelated) triggered by:

- Thermal (SRH)
 - Trap-assisted & band-to-band tunneling • carrier generation in the depleted region
 - \Leftrightarrow looks the same as a photon pulse

Secondary pulses (correlated):

<u>After-pulses</u>

Nicoleta Dinu - Jaeger, LAL-ARTEMIS, CNRS, Brussels Seminar, 04.03.2016

• carriers trapped by deep level defects during the avalanche discharging and then released, they trigger a new avalanche after the breakdown

Optical cross-talk

- photons emitted during avalanches (thermo-luminescence)
- these photons can trigger an avalanche in an adjacent $\mu cell$
- Various mechanisms
 - direct cross-talk (instantaneous)
 - << 1ns
- Indirect cross-talk (delayed)
 - 10-100 ns

direct cross-tall

A. Ferri, IPRD 2013)

avalanc

active

Dark count rate (2)

- DCR
- linear dependence due to triggering probability $\propto \Delta V$
- non-linear at high ΔV due to cross-talk and after-pulses $\propto \Delta V^2$
- scales with the active area (it should be mentioned /mm²)
- Critical issues:
 - Quality of epitaxial layer
 - Quality of Si substrate
 - Gettering techniques
 - Electrical field \rightarrow tunneling

Most recent devices

• DCR < 50 kHz/mm²

P. W. Cataneo, WO, et al. IEEE-TNS 61(2014)2657

NOTE: DCR depends on overvoltage, as well as PDE_7 \rightarrow plotting DCR vs PDE yields fairer comparison

Trend is higher PDE and lower DCR

Dark count rate vs. temperature

the tunnelling component of the DCR.

Summary of various detectors characteristics

	PIN	APD	GM-APD	SiPM
Gain	I	10 ² - 10 ⁴	≥I0 ⁶	≥I0 ⁶
Single photon detection / light intensity	no yes	no yes	yes no	yes yes
Op. voltage	0-5∨	0.1-1kV	20-500 ∨	<70V
Temp. sensitivity	low	high	low	low
Mech. Robustness	high	medium	high	high
Ambient light	o.k.	o.k.	o.k.	o.k.
Spectral range	tunable	tunable	tunable	tunable (NUV-IR)
Readout electronics	simple/complex	complex	simple	simple
Form factor	small	small	small	compact
Cost	low	high	low	low
Large area	no	no	no	Scalable
Magnetic field sensitivity	no	no	no	no
Noise	low	medium	low	Medium (improvements)
Response time	fast	slow	fast	fast
Detection efficiency	QE>90%	QE~80-90%	QE x P _{geiger} 80-90%	$QE \times P_{Geiger} \times \varepsilon_{geom}$ Peak: 40-75%

SiPM is almost a perfect detector for visible light

PART B: SiPM applications

Techniques of nuclear imaging

Principle

Detection

Techniques of nuclear imaging • γ camera, topographies

Pharmaceutical product:

- organic molecules + radioactive isotope
- Radioactive isotopes
 - ^{99m}Tc, ¹²³I, ²⁰¹TI, ¹⁸F, ¹¹C
 - Emitters γ , β^+ or β^-

Techniques Cancer diagnostic (homographs)

Cancer therapy (Per-operative detection systems)

- Gamma probes
 - ergonomic shape (pencil)
 - I-2 cm diameter, IO-20 cm length
 - sound signal proportional to counting rate
- Gamma imaging cameras
 - cover larger area: 10-100 cm²
 - give the spatial distribution of the radio-tracer
 - improve signal to noise ratio

Collaboration IMNC, LAL, Hôpital Lariboisière

Detection system requirements in surgical conditions

- reduced size and weight
- versatility of readout electronics
- adapted for sterile environment

SI 1828-3344M Hamamatsu HPK

- 4x4 monolithic SiPM array (earliest arrays on the market)
- mounted on a SMD package
- Each SiPM = one readout channel: • $3x3 \text{ mm}^2$, 3600 µcells, each µcell - $50x50 \text{ µm}^2$

i-v measurements of monolithic SiPM arrays

Nicoleta Dinu - Jaeger, LAL-ARTEMIS, CNRS, Brussels Seminar, 04.03.2016

Elementary module of MAGICS camera

Characteristics of read-out electronics

EASIROC chip

- 32-channels fully analog front-end readout
- 8-bit DAC (0-2.5 V) for individual SiPM gain adjustment
- energy measurement from 160 fC to 320 pC
 - I to 2000 pe @ SiPM gain of 10⁶
 - variable gain pre-amplifier tuned to 4 bits
 - variable shaping time from 25 to 175 ns
 - 2 multiplexed analog outputs (high gain, low gain)
 - I pe signal/noise ratio ≈ 9
- Low power consumption
 - 4.84 mW/channel, 155 mW/chip

Channels linearity for HG output $\sigma < 1\%$ from 160 fC to 100 pC

Channels uniformity for HG output

SiPM gain correction vs temperature

MAGICS camera

4 elementary modules 256 SiPM's = 256 readout channels

Mechanics

- alignment and assembling **Software**
- boards driving, data acquisition and treatment

4 elementary modules

MAGICS camera final view

Dimensions: 8.3 x 8.3 x 8.35 cm³ Weight: 1.2 kg Field of view : 5.1x5.1 cm²

Characteristics of MAGICS camera

Energy resolution: • 9.8% @ 122 keV

Experimental conditions:

- LaBr₃(Ce) 6 mm thickness
- Sources of ⁵⁷Co(122 keV) and ²⁴¹Am(60 keV)
- central collimation hole of 4 mm diameter
- $V_{\text{BIAS}} = 75.52 \text{V}, \text{T} = 40^{\circ} \text{C}$

1.32

50

Spatial resolution:

• 1.13 mm @ 122 keV

Experimental conditions:

- LaBr₃(Ce) 6 mm thickness
- ⁵⁷Co(122 keV)
- I mm diameter of 10×10 spots spaced 5 mm apart
- $V_{BIAS} = 75.52V, T = 40^{\circ}C$
- Levenberg-Marquard

reconstruction algorithm

of the collimator

SiPM applications

Discussion shifts from device features to how to select/implement them to dedicated application

how to evaluate SiPM for various applications (1)

- For many applications is the first parameter to review
- It increases with the bias voltage and μ cell size
 - consequences on peak values \Rightarrow very different from different vendors

- Does the sensor have enough sensitivity at the required wavelength?
- What overvoltage is needed to achieve the PDE and how does this impact on other performance parameters (DCR)?

Signal shape (rise time, recovery time)

- SiPM rise time is very fast; however, the output signal is dominated by impedance of full array (~ns)
- Recovery time is given by the product of effective μ cell capacitance and quenching resistor (O(10-100)ns)
 - Capacitance depends on area \Rightarrow recovery time vary for different μ cell sizes

- Is timing or count rate important for the application?
- Careful study of the various sensor sizes and/or µcell sizes should be carried out

Dark count rate

- Primary source of noise in a SiPM sensor
- Specially important for low light level applications or those with long integration times
- Standard devices today have
 - ~30-50 kHz/mm² @ 25°C
 - < 10 Hz/mm² @ -100°C
- It scales with μ cell size (overall sensor size) and with overvoltage and temperature
 - It will impact on SNR
- Points to consider:
 - Is DCR quoted per mm² or for the whole sensor area?
 - Is DCR sufficiently low to achieve the required SNR for the application?
 - DCR values should be checked as a function of overvoltage and temperature
 - If higher temperatures are to be encountered, is the increase in DCR tolerable?
 - Evaluate how much afterpulses and cross-talk are important for the application
 - Trenches presence does not guarantee the best cross-talk (effective only for direct cross-talk suppression)

.....how to evaluate SiPM for various applications (3)

Breakdown voltage and operating voltage

- Bias point at which the electrical field strength is sufficient to create a Geiger discharge
- Typical V_{BD} values at 25°C: HPK: ~50V; KETEK: ~ 24V; SensL: ~ 24.5V; FBK: ~ 28.5V
- It increases with increasing the temperature
 - Typical temperature coefficients: 20-55 mV/°C @ room temperature
 - Better stability at low T (bellow -100°C)
- Points to consider:
 - If multiple sensors have to be used in the system
 - Is the V_{BD} range enough narrow for the application? Are possibilities to adjust bias voltage /channel?
 - If a manufacture has agreed to provide sensors within a narrow V_{BD} range, is this from selecting the detectors, and if so has the selection increased the cost?
 - Has the impact of the power supply on the design and power requirements been considered?
 - Will temperature fluctuations in the application require a bias compensation circuit?

.....how to evaluate SiPM for various applications (4)

Application specific performances

- Packaging
 - Structure in which the silicon chip is housed and has its terminals connected
 - Impact on how the sensor can be used
- Form factor
 - Size and shape and I/O type (pins or pads)
 - Points to consider:
 - Does it need to be compact to fit in a miniaturized system
 - Should the edge deadspace be minimized to allow for formation of a close-packed array?
 - Is there a preference for pins, which are generally hand soldered, or pads, which can be reflow soldered?
- Optical transmission
 - Clear material used to encapsulate the sensor can have impact on PDE
 - Glass on the TSV package offers advantages for UV wavelengths
 - Points to consider:
 - Does the application involve wavelengths that could be absorbed by the sensor encapsulated material?

.....some starting references

• SiPM physics and technology

- Basic level
 - N. Dinu, "Silicon Photomultiplier (SiPM)", Chapter 8

Photodetectors – Material, Devices and Applications, Woodhead Publishing, Ed. B. Nabet, 2015

- Intermediate/detailed level
 - N. Dinu, "Instrumentation on Silicon detectors: from properties characterization to applications" Memoire d'habilitation à diriger des recherches, LAL-13-192, https://tel.archives-ouvertes.fr/tel-00872318/
- High level review
 - G. Collazuol, "Status and perspectives of Solid State Photo-Detectors", RICH 2013 workshop Kanagawa
- Many, many articles on specific subjects.....
 - Documentation on producers web pages:
 - http://www.hamamatsu.com/eu/en/4004.html
 - http://sensl.com/documentation/
 - <u>http://advansid.com/resources</u>

No. of papers in Google Scholar with the exact match of "silicon photomultiplier" in the title/abstract.body

Year	# papers
2000-2001	11
2002-2003	31
2004-2005	82
2006-2007	211
2008-2009	366
2010-2011	603
2012-2103	1117
2014- Nov. 2015	993

٠

Additional slides

Analog vs digital SiPM – tight competition

Digital SiPM good features

- can turn off noisier micro-cells
- reduced after-pulsing (less charge)
- triggering at known photon level
- sophisticated triggering and time pickoff architecture
- inherently digital readout

In addition to Philips D-SiPM see other dSiPM by → Charbon et al at IEEE NSS 2013 → Stoppa et al at IEEE NSS 2013

Digital SiPM most critical features

- scaled CMOS process has typically worse noise characteristics
 → mitigated by hottest single cells
- Fill Factor limited by area of silicon die used for digital circuits
 ... unless exploiting 3D technology → see Tetrault, Fontaine et al at IEEE NSS 2013
- lower PDE due also to lower QE \rightarrow can be further optimized
- Additional radiation damages to integrated electronics \rightarrow tests to be done

Active mode → "digital" SiPM

Philips Digital SiPM APD cells & integrated electronics

- Cell area ~ $30x50\mu m^2$
- Fill Factor ~ 50%

PDE vs T (constant $\Delta V=2V$) - halogen lamp (CW)

Radiation damage

• Radiation damage effects on SiPM:

- increase of dark count rate due to introduction of generation centers
- increase of after-pulse rate due to introduction of trapping centers
- may change V_{BD}, leakage current, noise, PDE....

Read-out electronics of SIPMED

- •8-bit input DAC, 0-2.5V range
- Low and high voltage pre-amplifiers, adjustable gain
- charge measured at maximum amplitude of slow shapers (50 to 175 ns peaking time) by two Track and Hold blocks
- fast trigger line, made of a fast shaper and a discriminator, provides the hold signal

• ALTERA ciclone III FPGA

FTDI FT2232H (USB protocol 2.0 Hi-speed, 440MBit/s)
USB mini-connector for power supply and PC communication
DC/DC converter for SiPM bias