Dielectron resonance search at $\sqrt{s} = 13$ TeV pp collisions

 $(Z' \rightarrow ee)$

Reza Goldouzian, On behalf of the HEEP group 2015/12/17

IIIHE CMS meeting: Jamboree

outline

- **Physics Motivations**
- **Analysis overview**
- Data and standard model backgrounds
- **Exent selection and trigger studies**
- High energy electron identification efficiencies
- Mass scale and resolution
- Background estimation
- **Mass spectra**
- Systematic uncertainties and statistical analysis

- **Results**
- ATLAS dilepton results
- Diphoton searches

Physics Motivations

- A common signature of many physics model beyond the standard model (SM) is a new massive neutral spin 1 particle which can decay to lepton pairs (refer to Z').
- Using approximately 20 fb^{-1} of 8 TeV data, Z' with couplings to fermions the same as the SM \overline{Z} boson (Z'_{SSM}) and a superstring-inspired Z' (Z'_ψ) are excluded with a mass less than **2.9** and **2.57** TeV respectively.

- The effect of the increase of \sqrt{s} from 8 to 13 TeV is mass dependent.
- Cross section at higher masses getting more from the \sqrt{s} increase.
- 1 fb^{-1} of 13 TeV data is equivalent to 20 fb^{-1} of data for a Z' mass of approximately 2.5 TeV.

Analysis overview

- The analysis follows the long-established approach of a shape-based search for a resonance in the dielectron mass spectrum.
- In this analysis we tried to
	- Develop a simple, robust high energy electron identification.
	- Maintain a robust trigger.
	- Profit from the maximum amount of statistics available at the Z peak.
	- Understand ID efficiencies from Z peak to high E_T .
	- Understand mass scale and resolution.
	- Measure and understand SM backgrounds.

Data and standard model backgrounds

- Run2015 B, C, and D DoubleElectron dataset (25 ns and 50 ns).
- **Silver JSON** (for 25 ns) used for main results, yielding 2.6 fb^{-1} of data.
- SM backgrounds can be divided into three categories;

\n $Z/\gamma^* \rightarrow e^+e^-$ \n	\n $t\bar{t}, tW, WW, WZ, ZZ, \tau\tau$ \n	\n $W + jets, \gamma + jets, \text{dijets}$ \n
\n Dominant background \n Estimated using MC \n Validated using $e - \mu$ events\n	\n With nonprompt and \n misidentified object \n Estimated using data\n	

- MC samples from the RunIISpring15DR74 campaign.
- MC samples pile-up reweighted using the official recipe (minimum bias x-sec 69000 mb)

Object and event selection

- High energy electron pairs (HEEP) selection v 6.0 used (official recommendation fro high energy electron selection).
- Cut-based selection designed to be highly efficient at high ET.
- Events categories: **Barrel-Barrel (BB)** or **Barrel-Endcap (BE)**.
- The highest mass ee pair is selected.

Trigger studies

- HLT_DoubleEle33_CaloIdL_GsfTrkIdVL is used (data).
- Efficiency in the plateau is \sim 99%.
- In MC, no trigger applied.
- Weight MC by the turn-on measured in data.

High energy electron identification efficiencies

- Scale factors for data and MC are studied using tag and probe method (as functions of Et, η , Φ of the probe and number of vertices in the event).
- The tag:
	- is required to pass the HEEP ID v6.0
	- It must be a barrel electron
	- Matched to the HLT_Ele27_eta2p1_WPLoose trigger
- MC are reweighted w.r.t the pileup and the trigger efficiency curves.
- Main strategy: Cut and count around the Z peak [60 GeV, 120 GeV].
- Non-DY processes either subtracted from data or included in MC.

Mass scale and resolution

 At the Z peak (60-120 GeV) compute the discrepancy in the broadness of the distribution between data and MC $\rightarrow \sigma_{extra}$.

$$
\sigma_{extra} = \sqrt{\sigma_{DATA}^2 - \sigma_{MC}^2}
$$

9

At fixed bin of M_{ee} the histo $(M_{reco} - M_{gen})/M_{gen}$ is fitted with a crystal ball. ■ The sigma parameter of crystal ball function is taken as mass esolution.

Background estimation

- The **SM Drell-Yan** background is estimated using POWHEG interfaced with PYTHIA8.
- The MC sample normalized to the data in Z peak region [60-120] GeV.
- The theory NNLO cross section is 1928 pb.

The main uncertainty on the DY background comes from PDF.

Background estimation

- Flavor symmetric backgrounds are estimated from MC samples.
- $t\bar{t}$, tW samples are generated using POWHEG and WW, WZ, ZZ are generated by PYTHIA 8.
- $Z/\gamma^* \to \tau^+ \tau^-$ is also in this category generated by MadGraph5aMC@NLO.

- In these processes the branching fration to a pair of leptons of different flavour, $e\mu$, is twice as large as the branching ratio to e^+e^- .
- Good agreement is seen in $e\mu$ channel between data and the predicted background.
- Backgrounds with misidentified object are estimated from data using fake rate method $(W + jets, \gamma + jets, dijets).$
- This category of background is small, representing less than 3% of the background above masses of 500 GeV.

Mass spectra

data-bkg)/bk

Systematic uncertainties and statistical analysis

- Results are presented as a ratio of cross sections at high mass to those at the Z.
	- all pt independent effects cancel (both known and unknown)
	- we are not affected by changes in luminosity uncertainty.

$$
R_{\sigma} = \frac{\sigma(pp \to Z' + X \to e^+e^- + X)}{\sigma(pp \to Z + X \to e^+e^- + X)} = \frac{N(Z' \to e^+e^-)}{N(Z \to e^+e^-)} \times \frac{A(Z \to e^+e^-)}{A(Z' \to e^+e^-)} \times \frac{\varepsilon(Z \to e^+e^-)}{\varepsilon(Z' \to e^+e^-)}
$$

- The main sources of systematic uncertainty are:
	- Electron ID at high energy (assign 4%(Barrel) -6%(Endcap) per lepton).
	- PDF uncertainties (mass dependent) from 6% to 20% up to 3 TeV.
	- Energy scale uncertainties (values @ RUN1 are 1-2%).
	- The jet background uncertainty is 50% and the non DY BG is 7%.
	- Normalization at the Z peak \sim 2%
- Using Bayesian unbinned likelihood .

$$
\mathcal{L}(m|\theta,\nu) = \frac{\mu^N e^{-\mu}}{N!} \cdot \prod_{i=1}^N \left(\frac{\mu_{SIG}(\theta,\nu)}{\mu} f_{SIG}(m|\theta,\nu) + \frac{\mu_{BG}(\theta,\nu)}{\mu} f_{BG}(m|\theta,\nu) \right)
$$

Signal Model; $f_{SIG}(m|\theta, v) = BW(m|\Gamma) \otimes Gauss(m|\sigma)$ Background Model;

$$
f_{BG}(m|\theta,\nu) = e^{am+bm^2+cm^3} m^d
$$

Dimuon analysis

- Using Run2015 B, C, and D SingleMuon dataset: 2.8 fb^{-1} MuonPhys.
- Main trigger for analysis: HLT_Mu50
- Offline cut: pT > 53 GeV

Data consistent with SM

Results

- Limit plots for an input of 0.6% of the mass peak for the signal width.
	- Due to the presence of the 2.9 TeV event, assumed width is important in limit setting.

ATLAS results

Search for Z' in dilepton (LFC) and (LFV) (in eu decays)

- Main background DY is taken from MC
- Top and diboson extrapolated at very high masses using a functional form
- Background from MC except for MJ in dielectron uses Matrix method (based on electron ID)

ATLAS-CONF-2015-070 ATLAS-CONF-2015-072

ATLAS results Searches for **Dilepton Resonances (LFC** and LFV) (I)

Search for Z' in dilepton (LFC) and (LFV) (in eu decays)

- Main background DY is taken from MC
- Top and diboson extrapolated at very high masses using a functional form
- Background from MC except for MJ in dielectron uses Matrix method (based on electron ID)

CMS -> 95% CL limit on SSM Z' at 3.15 TeV (2.9 TeV from Run-1)

Diphoton searches (ATLAS)

Search for a Two Photons Resonance (II)

Results: Events with mass in excess of 200 GeV are included in **unbinned fit**

- In the NWA search, an excess of 3.6σ (local) is observed at a mass hypothesis of minimal p_0 of 750 GeV
- Taking a LEE in a mass range (fixed before unblinding) of 200 GeV to 2.0 TeV the global significance of the excess is 2.0σ

In the NWA fit the resolution uncertainty is profiled in the NWA fit and is pulled by 1.5σ

The data was then fit under a LW hypothesis yielding a width of approximately 45 GeV (Approx. 6% of the best fit mass of approximately 750 GeV)

- As expected the local significance increases to $3.9_σ$
- Taking into account a LEE in mass and width of up to 10% of the mass hypothesis of 2.30 (Note: upper range in resolution fixed after unblinding)

Diphoton searches (CMS)

ULB HEEP team contributed to calculate mass resolution and scale in diphoton analysis

Including LEE (0.5 - 4.5 TeV; narrow width), global p-value < 1.2s

Diphoton searches (CMS)

- Combined limit improves single analyses sensitivity by 20-30%.
	- Largest excess: MG=750GeV, local significance 3σ
	- global significance < 1.7σ

Summary

- The entire 2015 data are analyzed to search for dilepton resonance.
- No significance excess observed w.r.t expected backgrounds.
- \blacksquare Lower limits are set on Z' mass assuming different width.
- With ~2.5 fb^{-1} of data in Run-II, limits are improve compared to Run-l.
- New (small) excess in diphoton spectrum is observed.

Backup

Search for diphoton resonances

EXO-15-004

- Two categories: barrel-barrel (EBEB), barrel-endcap (EBEE)
- $pT(g)$ > 75 GeV, Ich < 5 GeV (in 0.3 cone around photon direction)
- Efficiency, scale and resolution calibrated on $Z \rightarrow ee$ and high-mass DY events
- Search for RS graviton with three assumptions on coupling: $\tilde{k} = 0.01$ (narrow), 0.1, 0.2 (wide)
- Blind analysis, no changes have been made to the analysis since unblinding data in the signal region

Mass spectra

Significance of the 2.9 TeV event

- An event was observed with a mass of 2.9 TeV
- This event has been scrutinised: the p-value (without LEE effect) never drops below 0.01

Saturation

- Due to the limited range of its Multi Gain Amplifiers, the front end electronics of ECAL will saturate for energy deposits > 2 TeV (in barrel) and > 3 TeV (in endcap)
- It is possible to look at the energy deposit around the saturated crystal and "guess" its true energy (E1) with Multivariate Techniquess (TMVA)
- No saturated events in data
- Mature study ready for 2016

e-µ method

- Flavour symmetric backgrounds (tt, tW, WW, WZ, ZZ, $Z \rightarrow \tau \tau$)
- are cross-checked using the e-μ invariant mass spectrum
- BGs containing jets estimated using the same sign (SS) sample
- Good Data/MC agreement in a wide mass range

Jet background estimates

- Primary components: di-jet events (both jets passing ele ID criteria), W + jets, γ + jets
- "Fake Rate" (FR) method is used
- FR = $#$ jets passing HEEP 6.0/ $#$ jets passing FR preselection
- Derived vs ET in bin of |η| (<1.4442, 1.566-2.0, 2.0-2.5)

- Require at most 1 EcalDriven gsf electron to reduce $Z \rightarrow ee$ events
- Numerator has large real electron contamination from W+jets/γ+jets estimated either by MC or via tracker isolation template
- MC method is straightforward (direct subtraction after applying NLO corrections)
- The template method uses a template fo fit te relative contributions of real and fake electrons in the signal region \rightarrow Tracker isolation chosen (weak dependance on electron energy and pileup) in 2 bins: signal region (< 5 GeV) and BG region (10-15 GeV)
- Tweak w.r.t pre-approval: required to pass the calorimeter isolation and H/E cut but failing another cut (improves the template at large ET values) **29**

Jet background estimates

- With the MC approach: direct subtraction from numerator
- With the template approach:
- Nsigjets = Nbkg * Rjetssig/bkg
- Nsigjets = number of jets passing the HEEP 6.0
- Nbkg = number of observed events in the bkg region
- Rjetssig/bkg = ratio of the # jets in signal and background region (measured in each ET bin)

- At high ET the MC method overestimates the real electron contributions
- Below ~300 GeV, the two estimates agree
- The template FR is the chosen one (applying a 50% uncertainty based on 1HEEP + 1Fail and EE-EE closure tests)

Jet mass spectrum estimates

- 1FR estimate:
- Events are selected with electron pairs 1HEEP + 1Fail (passing FR preselection)
- These events are then weighted by $FR/(1 FR)$
- It includes W+jets, gamma+jets, 2*di-jets
- 2 FR estimate:
- The di-jet component can be estimated by selecting electron pairs where both electrons pass the FR preselection but fail the HEEP

- These events are then weighted by FR1/ $(1 FR1) * FR2/ (1 FR2)$
- This estimate is then subtracted off the 1FR estimate to get the total jet bg
- The uncertainty on the estimated background is set to 50 %

Estimates in jet rich regions

- The FR method is used to estimate the jet bg in jet rich regions
- 1 HEEP + 1 Fail region:
- W + jets taken from MC
- Gamma + jets taken from MC
- The di-jet background is estimated weighting the 2 Fails events by FR1/ $(1 FR1)$ $+$ FR2/ (1 – FR2)
- Agreement \sim 20-40 % (BB and BE)
- Agreement within 50 % (EE)

Pseudo Experiment Tests

- deficit \sim 700 GeV
- ran 100 toys to see if we saw something similar
- used fits for limit bkg as the input
- [https://sharper.web.cern.ch/sharp](https://sharper.web.cern.ch/sharper/cms/heep/2015/Nov26_PseudoPlots/) [er/cms/heep/2015/Nov26_Pseud](https://sharper.web.cern.ch/sharper/cms/heep/2015/Nov26_PseudoPlots/) [oPlots/](https://sharper.web.cern.ch/sharper/cms/heep/2015/Nov26_PseudoPlots/)
- saw 4 similar deficits in 100 expects, this is a sub 2 sigma effect

Pseudo Experiment Tests: Expt 13

Robustness Tests: min number of events

- method uses a low bkg tail to effectively normalise the bkg PDF to data
- require a minimum of 400 events
- checked changing to zero and 100 and see little difference
- most sig change at 500 when limits go from 7E-6 to a bit over 8E-6

Robustness Tests: Bkg PDF

- manually changed the bkg pdf to go +/- 1 sigma of PDF uncertainty
- so 19% at 3 TeV, 6% at 500 GeV
- no difference observed
- this is expected given the previous results test

Robustness Tests: Endcap Energy Scale

- the EB-EE mass space is different from the barrel
- adjusted the EB-EE scale up and down 1%
- very little difference observed

Robustness Tests: Effect of Mass Scale Uncertainty

- currently apply a 1% uncertainty on the mass scale
- only makes sense when combining channels
- effect is not large

