

IIHE seminar

Measurement of differential production cross sections for a Z boson in association with jets in pp collisions at $\sqrt{s} = 13$ TeV

Emanuela Barberis, Suman Beri, Bugra Bilin, Laurent Favart, Philippe Gras, <u>Anastasia Grebenyuk</u>, Apichart Hortiangtham, Alexandre Léonard, Sandeep Kaur, Kadir Ocalan, Tomislav Seva, Bhawandeep Uppal, Metin Yalvac, Fengwangdong Zhang

December 17, 2015

Motivation

► This process is a standard candle at LHC:

- High cross section
- Almost background free
- Clean signature due to decay of Z boson to two oppositely charged leptons with high reconstruction efficiency
- It is an ideal laboratory for jet production study
- ► It gives stringent tests on perturbative QCD computations
- It is a significant background in many SM processes, such as single top, ttbar, vector boson fusion, WW scattering, Higgs production, and for SUSY searches
- Measurement on the cross section of Z+jets as a function of different kinematical observables is crucial with highest possible precision
- Precision test on theoretical predictions

Z+jets predictions

Madgraph: Multi-parton LO ME +PS (reference MC for 8 TeV data)

aMC@NLO: NLO for higher parton multiplicity ME + PS (reference MC for 13 TeV)

we now test aMC@NLO computed for 2 legs at NLO:

Z+0/1/2 partons at NLO + PS Z+3 partons at LO + PS Z+(> 3) partons purely PS

Data and Simulation Samples

- Data: 2015 RunD with 25ns of bunch spacing
- Integrated luminosity of 2.5 fb⁻¹
- Signal is generated by MG5_aMC@NLO using FxFx merging scheme, with di-lepton mass larger than 50 GeV
 - ▶ The matrix elements include Z+0/1/2 partons NLO computation; Z+(\geq 3) partons LO approximation
 - ► The parton shower and hadronization are held by PYTHIA8 using CUETP8M1 tune
 - The total cross section is normalised to the NNLO calculation by FEWZ (2008.4 pb for one decay leptonic channel)
- ▶ $t\bar{t}$ background and single top modelled with POWHEG interfaced with PYTHIA 8
- Double vector boson BKG:
 - ► WW: generated by **POWHEG**
 - ► WZ: generated by aMC@NLO, interfaced with PYTHIA 8
 - ► ZZ: generated by PYTHIA 8
- ► Wjets sample is generated by aMC@NLO, interfaced with PYTHIA 8

Selection

Cuts:

- two well identified oppositely charged muons
- ▶ p_T(µ) ≥ 20 GeV
- In (µ) ≤ 2.4
- ▶ 71 \leq $M_{\mu\mu} \leq$ 111 GeV,
- Anti- k_t ($\Delta R = 0.4$) jets with $p_T(j) \ge 30$ GeV and $|y(j)| \le 2.4$

Detector Level Results: Muon's p_T and dimuon mass for $N_{\rm jets} \ge 0$ scenario

Detector Level Results: Jet Multiplicity

2.5 fb⁻¹ (13TeV) 2.5 fb⁻¹ (13TeV) # Events # Events $\begin{array}{c} \mu\mu \text{ Data} \\ Z/\gamma \ \rightarrow II \end{array}$ μμ Data 10⁸ -CMS Preliminary **CMS** Preliminary $Z/\gamma \rightarrow II$ VV VV 10 10 W w Single top Single top tī 10⁶ 10⁵ 10⁵ 10⁴ 10⁴ 10³ 10³ 10² 10² 10 Simulation/Data 1.4 Simulation/Data 1.4 1.2 1.3 0.8 0.8 0.6 0.6 6 N_{jets} 2 3 ≥0 ≥ 1 ≥2 ≥ 3 ≥4 ≥5 ≥6 0 5 1 Λ N_{iets}

Exclusive

Inclusive

 \blacktriangleright Good Data/MC description for $N_{\rm jets} < 5$ jet bins

Transverse momentum and absolute rapidity of jet

From Reco Distribution to Cross Sections

- To correct for the detector effects the data are unfolded to the generator level using the iterative D'Agostini method
- Background is subtracted from the data before the unfolding

Phase Space at Generator Level:

generated muons after EWK FSR are "dressed" with photons:

$$p^{\mu}_{ ext{corr.}} = p^{\mu} + \sum_{\gamma}^{\Delta R \leq 0.1} p^{\gamma}$$

- two opposite charge muons,
- ▶ $p_T(\mu) \ge 20$ GeV, $|\eta(\mu)| \le 2.4$ and $71 \le M_{\mu\mu} \le 111$ GeV,
- ▶ jets clustered using anti-k_t clustering algorithm with cone size of R = 0.4 from MC stable particles after hadronisation and removal of neutrinos.
- ▶ $p_{\mathsf{T}}(j) \ge 30$ GeV, $|y(j)| \le 2.4$, $\Delta R(j, \mu) > 0.4$

Systematic Uncertainties

Jet energy correction (JEC) uncertainty

Varying the JEC by plus and minus by the values provided by JETMET POG

Background estimation (Bgnd)

Estimated using simulated events by varying the cross section of 10% for $t\bar{t}$. The cross section uncertainties of other backgrounds are negligible.

Pile-up (PU)

Varying the minimum bias cross section by $\pm 5\%$.

Unfolding

Estimated by reweighting MC with ratio data/simulation of fine binning reco-level histogram: introduced difference on unfolding results taken as uncertainties

Luminosity (Lumi)

Total integrated luminosity uncertainty of 4.6% is considered.

Jet multiplicity

Inclusive:

Exclusive:

Jet Transverse Momenta

Jet absolute rapidity

Conclusion

- The fiducial cross section of Z boson associated with jets in pp collisions at a central energy of 13 TeV has been measured with the phase space:
 - ▶ $p_T(\mu) \ge 20$ GeV, $|\eta(\mu)| \le 2.4$ and $71 \le M_{\mu\mu} \le 111$ GeV,
 - ► $p_{\rm T}(j) \ge 30$ GeV, $|y(j)| \le 2.4$, $\Delta R(j, \mu) > 0.4$
- The full data set, which correspond to the tntegrated luminosity of 2.5 fb⁻¹, is analysed.
- The differential cross section is measured as a function of jet multiplicity, jet transverse momentum, jet rapidity, and scalar sum of jet transverse momenta up to three jets
- The measurements are compared to multi-legs NLO theoretical prediction, and they are consistent within systematical and statistical uncertainties.