

Search for dark matter with jets and missing transverse energy

Nadir Daci (IIHE – VUB)

DM WIMP Signal Models

> Implemented LHC DM Forum recommendations: Scalar, Pseudo-Scalar, Vector, Axial-Vector models

- > Public results: performed the Vector interpretation in time for the Jamboree approval
- > Exclusion limits on production cross section in the $(m_x; m_{DM})$ plane (assuming $g_{DM} = g_q = 1$)
- Translate these limits in terms of spin-independent nucleon-DM interaction cross section vs m_{DM}

Signature

Analysis strategy in a nutshell

➤ Trigger on both MET and MHT to reduce the rate while selecting events in the signal region (SR)
 ➤ Use "PFMETNoMu" (trigger ; offline) ⇒ define a Z→µµ control region (CR) for Z→vv background

- Define several CR for data-driven estimations: (di)muon, (di)electron, photon
 ⇒ Z(vv), W(lv) [90% of the total background]
 ⇒ use boson recoil instead of MET
- Calculate transfer factors to extrapolate the MET spectrum from CR to SR
- **Transfer factor**s take into account: lepton/photon acceptance/efficiency ; Z/γ, Z/W cross section ratios
- LO MC corrected to NLO (QCD+EW) using k-factors (depending on boson pT)
- Evaluate uncertainties
- Fit simultaneously the MET spectrum in all CRs to the data
- Compute exclusion limits on signal models

Monojet Trigger

Control regions

\diamond Single muon

- Signal METNoMu trigger
- > 1 tight muon, $p_T > 20$ GeV

\diamond Single electron

- Single electron trigger
- > 1 tight electron, $p_T > 40$ GeV
- MET>50 GeV [suppress QCD]

\diamond Double muon

- Signal METNoMu trigger
- 2 loose muons
- ➢ ≥1 tight muon pT>20 GeV
- Dimuon mass in [60, 120] GeV

♦ Double electron

- Single electron trigger
- 2 loose electrons
- ➢ ≥1 tight electron
- Dielectron mass in [60, 120] GeV

\diamond Single photon

- Single photon trigger
- 1 medium-ID photon
- ➢ pT>175 GeV |eta|<1.4442</p>

Control regions: Data/MC comparisons

Transfer factors : single lepton

 \blacktriangleright Lepton acceptance increases at high W pT \Longrightarrow falling shape of the TF

Transfer factors : dilepton

→ High Z pT \Rightarrow electrons overlap \Rightarrow loss of efficiency \Rightarrow rise of TF in last bin

Transfer factors : single photon

- First bin: photon pT threshold (175GeV) close to MET threshold (200GeV)
- > MET resolution effects cause a loss of efficiency on γ +jets events in this bin

QCD data-driven estimation

Method 1: Rebalance & Smear

- Rebalance jets in JetHT (QCD-dominated) events to obtain MET=0 using a kinematic fitter
- Smear jet momenta using resolutions
- This method results in a global scale factor of 2 to be applied on the MC prediction (unc: 50%)

\diamond Method 2: $\Delta \phi$ (jet, MET inversion)

- > Define CR by reverting the $\Delta \phi$ cut
- Measure TF from low Δφ to high Δφ region in JetHT data and QCD MC
- Fit TF using exponential functions
- Extract MET spectrum from MET data in CR and reweight them according to the fitted TF
- \Rightarrow This method confirms the scale factor of 2

Uncertainties

Fit to the data

Z(vv)+jets and W+jets background extracted through a combined max. likelihood fit of the five control regions and signal region

Additional constraint connects the Z(vv)+jets and W+jets estimates

$$\mu_i \xrightarrow{W \to l\nu} \to f_i(\boldsymbol{\theta}) \cdot \mu_i \xrightarrow{Z \to \nu\nu}$$

Results: MET spectrum

 $\diamond~$ Post-fit MET spectrum and yields

- Background-only fit
- Signal point plotted: m_x=1TeV ; m_{DM}=1GeV (dotted line)
- Data/prediction ratio plot: prefit (red), postfit (blue)
- Gray band: post-fit uncertainty on the total background

Process	$E_{\rm T}^{\rm miss}$	Emiss	$E_{\rm T}^{\rm miss}$				
	[200 - 250]	[250 - 300]	[300 - 350]	[350 - 400]	[400 - 500]	[500 - 600]	[> 600]
	GeV	GeV	GeV	GeV	GeV	GeV	GeV
$Z(\nu\nu) + jets$	19651 ± 279	7554 ± 116	3127 ± 55	1470 ± 34	1147 ± 32	357 ± 15	189.0 ± 9.5
$W(l\nu) + jets$	15555 ± 325	4843 ± 105	1747 ± 44	658 ± 20	433 ± 13	105.0 ± 4.7	48.6 ± 2.7
Z(ll) + jets	257 ± 57	66 ± 15	22.3 ± 4.9	5.1 ± 1.1	3.0 ± 0.7	0.44 ± 0.10	0.12 ± 0.03
Тор	705 ± 106	237 ± 35	72.9 ± 10.9	32.1 ± 4.8	18.0 ± 2.7	2.88 ± 0.43	2.47 ± 0.37
Dibosons	373 ± 77	167 ± 34	76 ± 16	37.0 ± 7.6	30.6 ± 6.3	9.4 ± 1.9	7.6 ± 1.6
QCD	313 ± 129	80.5 ± 33.3	17.4 ± 7.2	4.9 ± 2.0	1.30 ± 0.54	1.39 ± 0.57	0.14 ± 0.06
Total	36853	12948	5063	2207	1632	476	247
Observed	36858	13010	4981	2248	1614	484	260

Results: exclusion limits on production

Results: exclusion limits on interaction

Conclusion

- CMS used 2.1 /fb of 13TeV data to search for DM in a multijets+MET final state
- All backgrounds except top and dibosons are data-driven
- Simultaneous fits in all EWK control regions + backgrounds in signal region

- No significant excess is observed
- Results are interpreted using a simplified model involving a vector mediator
- Mediator masses up to 1.3TeV are excluded at 90% CL
- Not enough 13TeV data to reach the best bounds from the 8TeV analysis which exclude vector mediator masses up to 1.6TeV

BACKUP

Jets

Leading jet : CH fraction > 0.1, NH fraction < 0.8

kill anomalous noise, mainly beam backgrounds

MET

MET response agrees between data and MC at 1-2% level for large MET

Leptons

Photons

NLO k-factors

QCD Control Sample: JetHT

QCD Transfer factors : standard method

QCD Fit uncertainties

- Use fit function values and errors at each x-axis position to build up/down graphs
- Fit the shifted up/down graphs
- Obtain two additional functions
- Re-evaluate the MET spectrum using these up/down functions

QCD Prediction and Closure Test

Cross section ratios

Cross section ratios: validation in data

29

Z/W constraint

Control region: #Jets

Control region: Leading jet pT

Control regions: postfit recoil

Control regions: postfit recoil

Signal region: postfit distributions

JamborIIHE - 17/12/2015 - Nadir Daci (IIHE - VUB)

Signal region: postfit distributions

Limits: Axial-Vector mediator

