



# Search for Diboson Resonance decaying into pairs of boosted W and Z at $\sqrt{s} = 13$ TeV EXO-15-002

### Qun Wang On behalf of the Diboson Resonances Group

IIHE CMS meeting: Jamboriihe 2015/12/17

### Diboson Resonances Group

Sudha Ahuja<sup>1</sup>, Nural Akchurin<sup>11</sup>, Thea Klaeboe Aarrestad<sup>6</sup>, Yong Bang<sup>2</sup>, Luca Brianza<sup>4</sup>, Yu-Hsiang Chang<sup>7</sup>, Ching-Wei Chen<sup>7</sup>, Jordan Damgov<sup>11</sup>, Phil Dudero<sup>11</sup>, Laurent Favart<sup>13</sup>, Raffaele Gerosa<sup>4</sup>, Alessio Ghezzi<sup>4</sup>, Maxime Gouzevitch<sup>3</sup>, Pietro Govoni<sup>4</sup>, Lindsey Gray<sup>8</sup>, Andreas Hinzmann<sup>6</sup>, Huang Huang<sup>2</sup>, Ji-Kong Huang<sup>7</sup>, Raman Khurana<sup>7</sup>, Ben Kilminster<sup>6</sup>, Clemens Lange<sup>6</sup>, Sung-Won Lee<sup>11</sup>, Qiang Li<sup>2</sup>, Yun-Ju Lu<sup>7</sup>, Petar Maksimovic<sup>9</sup>, Dermot Moran<sup>14</sup>, Jennifer Ngadiuba<sup>6</sup>, Sergio Novaes<sup>1</sup>, Alexandra Oliveira<sup>5</sup>, Jacopo Pazzini<sup>5</sup>, Maurizio Pierini<sup>12</sup>, Salvatore Rappoccio<sup>10</sup>, José Ruiz<sup>1</sup>, Thiago Tomei<sup>1</sup>, Henry Yee-Shian Tong<sup>7</sup>, Nhan Tran<sup>8</sup>, Jorge Troconiz<sup>14</sup>, Qun Wang<sup>2</sup>, Mengmeng Wang<sup>2</sup>, Jun-Yi Wu<sup>7</sup>, Zijun Xu<sup>2</sup>, Shin-Shan Eiko Yu<sup>7</sup>, Xiao-Qing Yuan<sup>2</sup>, and Alberto Zucchetta<sup>5</sup>

<sup>1</sup> SPRACE-UNESP, São Paulo, Brazil
 <sup>2</sup> Peking University, Beijing, China
 <sup>3</sup> University of Lyon, Lyon, France
 <sup>4</sup> INFN Sezione di Milano-Bicocca, University of Milano-Bicocca, Italy
 <sup>5</sup> INFN Sezione di Padova, University of Padova, Padova, Italy
 <sup>6</sup> University of Zurich, Zurich, Switzerland
 <sup>7</sup> National Central University, Chung-Li, Taiwan
 <sup>8</sup> Fermi National Accelerator Laboratory, Batavia, USA
 <sup>9</sup> Johns Hopkins University, Baltimore, USA
 <sup>10</sup> State University of New York at Buffalo, Buffalo, USA
 <sup>11</sup> Texas Tech University, Lubbock, USA
 <sup>12</sup> California Institute of Technology, Pasadena, USA
 <sup>13</sup> Université libre de Bruxelles, Brussel, Belgium
 <sup>14</sup> Madrid University, Spain

# Outline

- Introduction
- Pre-selection
- Control plots
- V-tagger validation
- Background estimation
- Systematic uncertainties
- Final limit

# **Motivation for Diboson Search**

### **Beyond Standard Model**

- Many unification attempts Hierarchy problem
  - Why is gravity so much weaker?

# Motivate the existence of heavy EXOTIC resonances



|                                                | Channel | Models                                                                 |
|------------------------------------------------|---------|------------------------------------------------------------------------|
| EXOTIC<br>resonance<br>$X \rightarrow Diboson$ | WW      | Spin-0 Radion<br>Spin-1 HVT (neutral)<br>Spin-2 <b>Bulk Graviton</b> ¶ |
|                                                | WZ      | Spin-1 <b>HVT</b> ¶ (charged)                                          |
| X 7 21003011                                   | ZZ      | Spin-0 Radion<br>Spin-2 <b>Bulk Graviton </b> ¶                        |
|                                                |         | <sup>¶</sup> For December                                              |



# Data and simulated samples

### Simulated samples

- Spring15 MiniAODv2
- Pileup scenario at 25ns
  - asymptotic\_v2

### **Background samples**

- W+Jets(main background)
  - madgraph-pythia8
- TTbar+jets
  - powheg-pythia8
- Single top
  - amcatnlo-pythia8
- WW, WZ, ZZ
  - Powheg(WW)
  - amcatnol-pythia8(WZ, ZZ)

### Signal samples

- Bulk graviton, W'(HVT modelB)
  - madgraph

### Data

- Run2015D
  - 05Oct2015-v1
  - PromptReco-v4
- Golden JSON
  - 2.198 fb-1
- Jet Energy Corrections:
  - Summer15\_25nsV6\_DATA

### Samples detailed list

- Chapter 3 in the common note
  - AN-15-196

### **Pre-selection**

#### Muon channel

- HLT\_Mu45\_eta2p1 or HLT\_Mu50\_eta2p1
- Tight muon: HighPT ID, rellsoR03 < 0.1,  $p_T > 53 \text{ GeV}$ ,  $|\eta| < 2.1$ ,
- Loose muon (for veto): HighPT ID, rellsoR03 < 0.1, p<sub>T</sub> > 20 GeV , |η|<2.4</li>
- Missing  $E_T > 40 \text{ GeV}$  (type I)

Trigger studies for high pT muons, Muon POG, https://indico.cern.ch/event/455179/

#### **Electron channel**

- HLT\_Ele105\_CaloIdVT\_GsfTrkIdT or HLT\_Ele115\_CaloIdVT\_GsfTrkIdT
- Tight electron: HEEP v6.0,  $p_T > 120 \text{ GeV}$
- Loose electron (for veto): HEEP v6.0
- Missing E<sub>T</sub> > 80 GeV (type I)

Electron trigger efficiencies with 25ns data, Wprime meeting, https://indico.cern.ch/event/455047/



#### Both channels

Noise cleaning filters AK8 jets,  $p_T > 200$  GeV, Loose ID AK4 jets (for b-veto), Loose ID Leptonic W pT > 200 GeV

$$\begin{split} &\Delta R(I, W_{had}) > \pi/2 \\ &\Delta R(W_{had}, W_{lep}) > 2 \\ &\Delta R(W_{had}, missing E_T) > 2 \end{split}$$

# **Analysis Strategy**

### "Bump" search: looking for an excess over the Mvw distributions



### How to estimate the background contributions

- Minor background: taken from simulation, corrected with scale factors from data
- Wjets: extracted from data

8 signal categories: HP/LP, WW/WZ, el and muon

# Signal Efficiency(WV in each category)



### Control Plots in W+jets



### Control Plots in W+jets



# **Control Plots in TTbar**

p10

**Definition**: Top-enriched control sample can be naturally obtained by:

- Asking at least one b-tagged jet outside the W-jet (iCSVM)
- Not requiring back to back topology



# V-tagger in TTbar

### Top Scale factor(TTbar + single Top yield correction)

The top scale factors are just derived by DATA/MC in the signal region. Cut count method:  $Sf_{top} = N_{data}/N_{MC}$  (minor background contribution negligible)

| Top scale factor                | Muon channel      | Electron channel  | Muon+Electron channels |
|---------------------------------|-------------------|-------------------|------------------------|
| HP( $\tau_{21} < 0.6$ )         | $0.872 \pm 0.040$ | $0.833 \pm 0.070$ | $0.862 \pm 0.035$      |
| LP( $0.6 < \tau_{21} < 0.75$ )  | $0.787 \pm 0.110$ | $0.661 \pm 0.200$ | $0.756 \pm 0.097$      |
| $HP(\tau_{21} < 0.45)$          | $0.847 \pm 0.049$ | $0.865 \pm 0.084$ | $0.850 \pm 0.042$      |
| LP( $0.45 < \tau_{21} < 0.75$ ) | $0.883 \pm 0.059$ | $0.746 \pm 0.106$ | $0.870 \pm 0.053$      |

### Mass scale and resolution

### Simultaneous fit of mu and el mJ spectrum

| Parameter    | Data             | simulation     | Data/Simulation    |
|--------------|------------------|----------------|--------------------|
| < <i>m</i> > | $84.7 {\pm} 0.4$ | $85.3{\pm}0.4$ | $0.992{\pm}~0.005$ |
| $\sigma$     | $8.2{\pm}0.5$    | $7.3{\pm}0.4$  | $1.12{\pm}0.07$    |



### V-tagger in TTbar

### W-tagging scale factors

- Consider the TTbar made of 'real' W and 'combinatorial'
- Background(s-top/WW/W+jets) are taken from MC
- Pass PDF  $f_{pass} = f_{pass}^{W-match} \times \epsilon \times N_W + f_{pass}^{W-nomatch} \times N_2 + F_{pass}^{STop} + F_{pass}^{VV} + F_{pass}^{Wjet}$
- Fail PDF  $f_{fail} = f_{fail}^{W-match} \times (1-\epsilon) \times N_W + f_{fail}^{W-nomatch} \times N_3 + F_{fail}^{STop} + F_{fail}^{VV} + F_{fail}^{Wjet}$
- Simultaneous fit data and MC in PASS & FAIL to get SF



# W+jets Background Estimation Yields

p13

### Dominant background is W+jets– Large contribution of ttbar as well normalization: fit on data sideband in mJ;



# W+jets Background Estimation Shape

p14

# Mvw shape: extrapolated from data, from the sideband using alpha function $F_{MC,SR}(m_{lvi})$

# $\alpha_{\rm MC}(m_{l\nu j}) = \frac{F_{\rm MC,SR}(m_{l\nu j})}{F_{\rm MC,LSB}(m_{l\nu j})}$

### Muon HP



# V+jets Mvv shape in Signal Region(mu) p15



### Signal Modelling

### Signal fits are performed with double Crystal-ball function.



# Systematic Uncertainties(1)

#### Background normalization

- W+jets normalization uncertainty —> driven by amount of data in sideband
- TTbar and Single Top normalization —> uncertainty in the scale factor derived in top-enriched control sample
- VV normalization —> uncertainty in the V-tagging scale factor derived in top-enriched control sample

| Source                              | W+jets         | tī         | Single Top | vv      |  |
|-------------------------------------|----------------|------------|------------|---------|--|
| Luminosity                          | -              | 5%         | 5%         | 5%      |  |
| Cross section                       | -              | -          | 5%         | 3%      |  |
| V-tagging eff. (HP/LP)              | -              | -          | -          | 13%/49% |  |
| W+jets normalization                | See Tab.6      | -          | -          | -       |  |
| W+jets shape                        | See Sec. 7.1.1 | -          | -          | -       |  |
| the permedization (LID / LD)        | -              | 5%/14% (µ) | 5%/14% (µ) |         |  |
| (TIT / LT )                         |                | 8%/30% (e) | 8%/30% (e) | -       |  |
| Trigger                             | -              | 1% (µ)     | 1% (µ)     | 1% (µ)  |  |
| inggei                              | -              | 1% (e)     | 1% (e)     | 1% (e)  |  |
| Lopton identification               |                | 1% (µ)     | 1% (µ)     | 1% (µ)  |  |
| Lepton dentification                | -              | 3% (e)     | 3% (e)     | 3% (e)  |  |
| Summary of background uncertainties |                |            |            |         |  |

#### W+jets Mwv shape

- miet<sup>pruned</sup> categories of data
- 2.uncertainties in the alpha shape driven by W+jets MC statistics ------ uncorrelated between
- m<sub>jet</sub>pruned categories

3. uncertainties due to the choice of the function taken into account inflating 1) and 2) by  $\sqrt{2}$ 

- Most important sources for signal normalization:
  - Jet energy scale: 3-12% Jet mass scale: 1-10%

  - Jet mass resolution: 1-5%
    V-tagging efficiency scale factors 13/49% for HP/LP
- Summary of signal uncertainties

| Source                     | Signal Normalization |        | Mean m <sub>WW</sub> Shape |        | Width m <sub>WW</sub> Shape |        |
|----------------------------|----------------------|--------|----------------------------|--------|-----------------------------|--------|
| Source                     | μν+jet               | ev+jet | μν+jet                     | ev+jet | μv+jet                      | ev+jet |
| Muon Energy Scale          | 0.7%                 | -      | 0.1%                       | -      | 0.5%                        | -      |
| Electron Energy Scale      | -                    | 0.2%   | -                          | 0.1%   | -                           | 0.1%   |
| Muon Energy Resolution     | 0.1%                 | -      | 0.1%                       | -      | 0.1%                        | -      |
| Electron Energy Resolution | -                    | 0.1%   | -                          | 0.1%   | -                           | 0.1%   |
| Trigger                    | 1%                   | 1%     | -                          |        | -                           |        |
| Lepton identification      | 1%                   | 3%     |                            | -      | ~                           | -      |
| Luminosity                 | 5%                   |        |                            | $\geq$ | -                           |        |
| b-tag selection            |                      | 0.2%   |                            |        | -                           |        |
| W-tagging eff. (HP/LP)     | 13%/49%              |        |                            | -      |                             |        |
| Jet Energy Scale           | See Tab. 8           |        |                            | 1.3%   | [2%-3%]                     |        |
| Jet Energy Resolution      | See Tab. 8           |        |                            | 0.1%   | 3%                          |        |
| PDF uncertainties          | See Sec. 7.7 –       |        |                            |        | -                           |        |

- Extrapolation uncertainties for V-tagging SF at high pt comparing PYTHIA8 and HERWIG++ signal samples
  - compare selection efficiency of each mass point wrt 600 GeV (pr 200-300 GeV)
  - Found 1-4% differences in signal efficiency
  - PDF uncertainties on signal xsec
    - 10-40% for Bulk Graviton signal in [0.5, 3 ]TeV



# Limits

### **Combined Limits**

Use the Higgs combination tool and Asymptotic CL<sub>s</sub> method to compute the upper limits.



The achieved sensitivity is not sufficient to exclude Bulk Graviton model. For HVT model B of a charged spin-1, it's excluded for the masses below 1.8TeV

### Limits



### **Event Display**

#### **Single Electron HP-WW**



CMS Experiment at LHC, CERN Data recorded: Sat Oct 31 09:39:32 2015 CET Run/Event: 260431 / 559973700 Lumi section: 330

 $m_{jet}^{pruned} = 68.7 \text{ GeV}$ AK8 jet mass = 135.6 GeV AK8 jet pT = 1.31 TeV W<sub>lept</sub> pT = 1.34 TeV Mww = 2.78 TeV

# Summary

- Di-boson search surpasses Run 1 sensitivity above 1.7 TeV
- Combined significance in region of interest 1.7-2.0 is below 2 sigma
- Highest combined significance at 2.8-3.0 TeV of 2.8 sigma reduced to 1.6 sigma including LEE
- Most stringent limit on W'->WZ of 2.0 TeV set by this search
- The final analysis and combination is scheduled as a paper for Moriond.
- The data to be taken in 2016 will finally unravel what is happening around  $M_{VV}$  =2 TeV, observed in many channels.

# Backup

### **Corrected Pruned Jet Mass**



### **Analysis Strategy**

### 4 signal categories

HP/LP: WW, WZ

#### Tau21 cut optimization in VW



### Efficiency of Bulk Graviton Signal

- CMS Preliminary √s=13 TeV Efficiency 0.8 0.7 0.6 Electron channel Muon channel - HLT 0.5 +- HLT + LeptonID -+- LeptonID 0.4 - JetID - \* JetID JetMass JetMass 0.3 1000 1500 2000 2500 3000 3500 4000 4500 500 Generated graviton mass (GeV)
- HLT + Lepton ID

   Electron channel
  - 🗆 78% @ 2.0 TeV
  - Muon channel
     90% @ 1.2 TeV
- Full selection
  - Electron channel
     67% @ 2.5 TeV
  - Muon channel
     75% @ 1.6 TeV

### Signal Efficiency after Each Selections



### Control Plots in W+jets



### Control Plots in W+jets





### V+jets Mvw shape in Signal Region

![](_page_30_Figure_1.jpeg)

### V+jets Mvw shape in Signal Region

p31

### Mu LP

![](_page_31_Figure_2.jpeg)

# **Closure check on alpha-method**

### **Closure check:**

- Split the low sideband in two region (A and B)
- Use region A as sideband, region B as signal region
- Check the extrapolation of
   W+jets from region A to region
   B

(electron and muon channel merget together due to the low statistics of the sideband alone)

![](_page_32_Figure_6.jpeg)

### Closure check: sideband fit and alpha

#### Alpha-function: MC ratio Fit Mvw distribution in data, in region A, region B/region A subtracting minor backgrounds, to of Mvw shape of W+jets extract W+jets shape CMS Preliminary, 1.3 fb<sup>-1</sup> (√s = 13 TeV) CMS Preliminary, 1.3 fb<sup>-1</sup> ( $\sqrt{s}$ = 13 TeV) 10<sup>4</sup> Events / (100 GeV 1111111111111 arbitrary units 1ന് CMS Data W+jets NW/WZ 0.25 Region A 10<sup>3</sup> Single Top ---- Region B Uncertainty 8 10<sup>2</sup> α 0.2 $\alpha \pm 2\sigma$ 10 $\alpha \pm 1\sigma$ 6 0.15 10-1 0.1 10<sup>-2</sup> 1000 1500 2000 2500 3000 3500 4000 4500 5000 $m_{WW} (GeV)$ 0.05 <u>Data-Fit</u> σ<sub>data</sub> 1000 1500 2000 2500 3000 3500 4000 4500 5000 m<sub>ww</sub> (GeV) 2500 3500 3000 4000 4500 1000 1500 2000 5000

### Closure check: extrapolation to Region B p34

![](_page_34_Figure_1.jpeg)

 $\rightarrow$  final background prediction in region B

![](_page_34_Figure_3.jpeg)

### Signal Modelling

Signal fits are performed with double Crystal-ball function.

![](_page_35_Figure_2.jpeg)

### Statistical interpretation

- No deviation from the standard model prediction is observed in the final Mwv distributions in any of the categories
- We set 95% CL upper limits on the two production cross-section of a narrow resonance:
   spin-2 Bulk Graviton-> WW
   spin-1 W'->WZ in the context of the HVT model B
- Since MC available for only few mass points we interpolate the Crystall-Ball parameters and the signal efficiency to predict the shape and normalization of the intermediate mass points

![](_page_36_Figure_4.jpeg)

# Additional checks

- Run expected limits estimating the shape directly from the signal region (as in VV analysis) using an exponential with tail and assuming
  - fully uncorrelated shapes between the pruned jet mass categories
    - fit different parameters in each category
  - completely correlated shapes between the pruned jet mass categories
    - force same parameters in different categories
- Compare the results with default alpha method where in the different categories we assume
  - same Mvv distribution in low sideband
  - different alpha shapes
- Run the check for muon channel only in the HP category

# Dijet methon (post-fit)

![](_page_38_Figure_1.jpeg)

### **Compare Expected Limits**

![](_page_39_Figure_1.jpeg)

- The different methods give consistent results
- The additional information from data in sideband contained in the alpha method give better constraint on the shape in signal region (especially at low masses)

# Post-fit uncertainties

#### What we have now in the datacards

![](_page_40_Figure_2.jpeg)

#### For a parameter A of the pdf, this means:

- use the a-priori information on the parameter
  - use A as initial value with its uncertainty  $\sigma A$
- assign a gaussian prior for  $\sigma A$  with central value = 0
  - if gauss width = 1: constrain the parameter to vary inside the uncertainty of the a-priori fit
  - if gauss width = 1.4: constrain the parameter to vary inside a larger uncertainty of what obtained a-priori
- → In the next slides study post-fit uncertainties and expected limits for different values of the gauss width
  - run MaxLikelihood fit for one datacard (ex: 2 TeV BulkG in HP-WW category)
  - run diffNuisances.py script

### Post-fit uncertainties

| • | Results with gauss width $\sigma_{input} = 1.4$                                                                                                                                               | shift,                                                           | , relative post-fit                          | uncertainty              |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|--------------------------|--|
|   | Deco_WJets0_xww_sb_lo_from_fitting_mu_HP_mlvj_13TeV_eig0<br>Deco_WJets0_xww_sb_lo_from_fitting_mu_HP_mlvj_13TeV_eig1<br>Deco_WJets0_xww_sb_lo_from_fitting_mu_HP_mlvj_13TeV_eig2              | * +0.20,<br>+0.00,<br>* -0.82,                                   | , 0.72 *<br>, 0.99<br>, 0.71 *               | Post-fit expected limit: |  |
|   | Deco_WJets0_xww_sim_mu_HPW_mlvj_13TeV_eig0<br>Deco_WJets0_xww_sim_mu_HPW_mlvj_13TeV_eig1<br>Deco_WJets0_xww_sim_mu_HPW_mlvj_13TeV_eig2<br>Deco_WJets0_xww_sim_mu_HPW_mlvj_13TeV_eig3          | * +0.11, 0.84 *<br>-0.23, 0.97<br>* +0.41, 0.93 *<br>-0.03, 0.99 |                                              | r < 1.8359               |  |
| • | Results with gauss width $\sigma_{input} = 1.0$                                                                                                                                               | shi                                                              | ft, relative post-                           | fit uncertainty          |  |
|   | <pre>Deco_WJets0_xww_sb_lo_from_fitting_mu_HP_mlvj_13TeV_eig0<br/>Deco_WJets0_xww_sb_lo_from_fitting_mu_HP_mlvj_13TeV_eig2<br/>Deco_WJets0_xww_sb_lo_from_fitting_mu_HP_mlvj_13TeV_eig2</pre> | 2 * +0.2<br>+0.0<br>2 * -0.8                                     | 4, 0.80 *<br>0, 0.99<br>8, 0.79 *            | Post-fit expected limit: |  |
|   | Deco_WJets0_xww_sim_mu_HPW_mlvj_13TeV_eig0<br>Deco_WJets0_xww_sim_mu_HPW_mlvj_13TeV_eig1<br>Deco_WJets0_xww_sim_mu_HPW_mlvj_13TeV_eig2<br>Deco_WJets0_xww_sim_mu_HPW_mlvj_13TeV_eig3          | * +0.1<br>-0.2<br>* +0.4<br>-0.0                                 | 1, 0.88 *<br>4, 0.98<br>4, 0.95 *<br>3, 0.99 | r < 1.7266               |  |
|   |                                                                                                                                                                                               |                                                                  |                                              |                          |  |

#### $\rightarrow$ When changing from 1.4 to 1.0:

- expected limits improve of ~6%
- data in signal region constrain parameters from 1-1.3 σinput down to 0.8-0.95 σinput

### Post-fit uncertainties

#### Compare with normalization uncertainties

- fix shape parameters —> set uncertainty to very low value ( $\sigma_{input} = 0.001$ )
- and change for example the uncertainty on the W+Jets normalization

#### • W+Jets normalization unc. = 5% (original value from sideband fit)

shift, relative post-fit uncertainty

CMS\_xww\_WJ\_norm\_mu\_HPW\_13TeV +0.69,0.82

Post-fit expected limit: r < 1.4180

• W+Jets normalization unc. = 1%

| shift, relative post-fit uncertainty |           |  | Post-fit expected limit: |
|--------------------------------------|-----------|--|--------------------------|
| CMS_xww_WJ_norm_mu_HPW_13TeV +0.     | .21, 0.99 |  | r < 1.3945               |

- → When changing from 5% to 1%:
  - expected limits improve of ~2%
  - data in signal region do not constrain the initial parameter

# Limits( Bulk Graviton)

Use the Higgs combination tool and Asymptotic CL<sub>s</sub> method to compute the upper limits.

![](_page_43_Figure_2.jpeg)

# Limits(W')

![](_page_44_Figure_1.jpeg)

### **Event Display**

In the next slides event display and properties of the events in the region  $\sim 2.8-3.2 \text{ TeV}$ 

| dataset        | HP WW-enriched | HP WZ-enriched | LP WW-enriched | LP WZ-enriched |
|----------------|----------------|----------------|----------------|----------------|
| SingleMuon     | 1              | 1              | 1              | 1              |
| SingleElectron | 2              | 1              | 0              | 1              |

![](_page_45_Figure_3.jpeg)

CMS Experiment at LHC, CERN Data recorded: Sun Nov 1 07:34:12 2015 CET Run/Event: 260532 / 578653788 Lumi section: 331

![](_page_45_Figure_5.jpeg)

 $m_{jet}^{pruned} = 78.6 \text{ GeV}$ AK8 jet mass = 108.7 GeV AK8 jet pT = 0.37 TeV W<sub>lept</sub> pT = 0.44 TeV Mww = 2.97 TeV

### Single Electron HP-WW

![](_page_46_Figure_1.jpeg)

CMS Experiment at LHC, CERN Data recorded: Thu Oct 1 05:16:39 2015 CEST Run/Event: 257969 / 442651883 Lumi section: 290  $m_{jet}^{pruned} = 72.1 \text{ GeV}$ AK8 jet mass = 113.5 GeV AK8 jet pT = 0.43 TeV W<sub>lept</sub> pT = 0.46 TeV Mww = 3.12 TeV

### Single Muon LP-WW

![](_page_47_Figure_1.jpeg)

CMS Experiment at LHC, CERN Data recorded: Sat Sep 26 12:07:34 2015 CEST Run/Event: 257531 / 115830201 Lumi section: 82

phi = -0.148

 $m_{jet}^{pruned} = 71.4 \text{ GeV}$ AK8 jet mass = 115.4 GeV AK8 jet pT = 0.63 TeV Wlept pT = 0.42 TeV Mww = 2.95 TeV

### Single Muon HP-WZ

![](_page_48_Figure_1.jpeg)

 $m_{jet}^{pruned} = 86.5 \text{ GeV}$ AK8 jet mass = 128.6 GeV AK8 jet pT = 0.67 TeV  $W_{lept} pT = 0.37 \text{ TeV}$ Mww = 2.82 TeV

### Single Electron HP-WZ

![](_page_49_Figure_1.jpeg)

CMS Experiment at LHC, CERN Data recorded: Mon Nov 2 20:55:43 2015 CET Run/Event: 260627 / 378350334 Lumi section: 224  $\begin{array}{l} \text{m}_{\text{jet}}^{\text{pruned}} = 102.2 \text{ GeV} \\ \text{AK8 jet mass} = 127.0 \text{ GeV} \\ \text{AK8 jet } p_{\text{T}} = 0.69 \text{ TeV} \\ \text{W}_{\text{lept}} p_{\text{T}} = 0.46 \text{ TeV} \\ \text{Mww} = 2.76 \text{ TeV} \end{array}$ 

### Single Muon LP-WZ

p50

![](_page_50_Figure_1.jpeg)

 $\begin{array}{l} \text{m}_{jet}^{pruned} = 94.3 \text{ GeV} \\ \text{AK8 jet mass} = 326.9 \text{ GeV} \\ \text{AK8 jet } p_{T} = 1.47 \text{ TeV} \\ \text{W}_{lept} p_{T} = 1.26 \text{ TeV} \\ \text{Mww} = 2.87 \text{ TeV} \end{array}$ 

### Single Electron LP-WZ

![](_page_51_Figure_1.jpeg)

CMS Experiment at LHC, CERN Data recorded: Fri Oct 9 22:15:53 2015 CEST Run/Event: 258694 / 135582430 Lumi section: 75  $\begin{array}{l} \text{m}_{\text{jet}}^{\text{pruned}} = 100.4 \; \text{GeV} \\ \text{AK8 jet mass} = 140.2 \; \text{GeV} \\ \text{AK8 jet } p_{\text{T}} = 0.55 \; \text{TeV} \\ \text{W}_{\text{lept}} \; p_{\text{T}} = 0.44 \; \text{TeV} \\ \text{Mww} = 2.84 \; \text{TeV} \end{array}$ 

### Single Muon HP-WW

![](_page_52_Figure_1.jpeg)

Lumi section: 331

### Single Electron HP-WW

![](_page_53_Figure_1.jpeg)

### Single Electron HP-WW

![](_page_54_Figure_1.jpeg)

Lumi section: 290

### Single Muon LP-WW

![](_page_55_Figure_1.jpeg)

### Single Muon HP-WZ

![](_page_56_Figure_2.jpeg)

### Single Electron HP-WZ

![](_page_57_Figure_1.jpeg)

### Single Muon LP-WZ

![](_page_58_Figure_1.jpeg)

### Single Electron LP-WZ

![](_page_59_Figure_1.jpeg)

Lumi section: 75

# V+jets Mvv shape in Signal Region(el)

![](_page_60_Figure_1.jpeg)