The SoLid experiment

Short baseline Oscillation search with Lithium-6 Detector

Leonidas N. Kalousis (VUB) for the SoLid collaboration February 18, 2016

Introduction

- The recent observation of the *Reactor Antineutrino Anomaly* has now revived the interest in short-baseline experiments probing the disappearance of v_e and \overline{v}_e
 - Source experiments using high intensity neutrino and antineutrino emitters coupled with large-scale detectors
 - Very short-baseline reactor experiments
- SoLid is a reactor project that aims to resolve the anomaly employing a novel detector design
 - ~ 5 10 m from the BR2 research reactor in SCK•CEN (Belgium)
 - Cube segmentation and robust neutron identification capabilities
 - Synergy with reactor monitoring, nuclear non-proliferation efforts
- SoLid (phase I) is expected to start construction in 2016
 - Scan the allowed parameter region within a year of data taking

Neutrinos

- Originally, incorporated as massless particles in the Standard Model (SM) of particle physics
 - Left-handed helicity states only
- Neutrino oscillations first discovered in 1998 by Super-Kamiokande
 - Now confirmed by several experiments
 - Solar and atmospheric oscillations

Open questions

- What are their masses ?
- Are they Majorana particles ?
- Is there CP violation in the v sector ?
- Do sterile neutrinos exist ?

Neutrino masses and mixing

O. Mena and S. Parke Phys. Rev. D 69, 117301 (2004)

Neutrino mixing through a rather simple schematic

Lepton mixing matrix (c_{ij}=cosθ_{ij}, s_{ij}=sinθ_{ij}) :

$$\begin{aligned} |\nu_{\alpha}\rangle &= \sum_{i=1}^{3} \mathcal{U}_{\alpha i}^{*} |\nu_{i}\rangle \\ \mathcal{U} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times diag\{e^{i\alpha_{1}}, e^{i\alpha_{2}}, 1\} \\ & & & \\ &$$

Lepton flavor violation through neutrino oscillations

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{i,j} \mathcal{U}_{\alpha i}^{*} \mathcal{U}_{\beta i} \mathcal{U}_{\alpha j} \mathcal{U}_{\beta j}^{*} e^{-i\frac{\Delta m_{ij}^{2}L}{2E}}$$

- Oscillation patterns driven by the squared-mass differences, Δm^2_{ii}
- The formula depends on the neutrino energy (E) and distance (L)

Super-Kamiokande,

http://www-sk.icrr.u-tokyo.ac.jp/sk/sk/atmos-e.html

MINOS and MINOS+,

http://www-numi.fnal.gov/PublicInfo/forscientists.html

Current picture

Solar exp. and KamLAND $\Delta m_{12}^2 \approx 7.6 \ 10^{-5} \ eV^2$ $\sin^2(2\theta_{12}) \approx 0.85$ (large mixing angle)

Super-K, MINOS, T2K *et al.* Daya Bay, Double Chooz, $\Delta m_{23}^2 \approx 2.4 \ 10^{-3} \text{ eV}^2$ $\sin^2(2\theta_{23}) \approx 1.0$ (almost maximal mixing)

Gonzalez-Garcia et al., arXiv:1409.5439

Reactor antineutrinos

- Reactors are copious sources of v_e
 - Beta decays of fission fragments
 - Low energy antineutrinos; isotropic flux
 - An 1 GW_{th} power reactor emits 2 10^{20} v_e/sec
- The most common detection channel is inverse beta decay (IBD):

$$\bar{\nu}_e + p \to e^+ + n$$

• Number of events detected:

$$n = \frac{1}{4\pi R^2} \; \frac{P_{th}}{\langle E_f \rangle} \; N_p \; \sigma_f \; \epsilon$$

Cross-section per fission

$$\sigma_f = \int_0^\infty S(E_\nu) \sigma_{V-A}(E_\nu) dE_\nu$$

Reactor spectrum re-evaluation

- New reactor antineutrino spectra pioneered by Saclay
 - Work stimulated by Double Chooz, Phys. Rev. C 83, 054615 (2011)
- Conversion with "true" distribution reproducing >90% of ILL data and five effective branches to the remaining 10%
 - 3% net increase wrt old spectrum for ²³⁵U, ²³⁹Pu and ²⁴¹Pu
 - Off equilibrium effects increase neutrino yield
 - Decrease of neutron life-time

 $\sigma_f^{pred} = \sum f_k \sigma_{f,k}^{pred}$

	old [<u>3</u>]	new		
$\sigma^{ m pred}_{f,^{235} m U}$	$6.39{\pm}1.9\%$	$6.61{\pm}2.11\%$		
$\sigma_{f,239\mathrm{Pu}}^{\mathrm{pred}}$	$4.19{\pm}2.4\%$	$4.34{\pm}2.45\%$		
$\sigma_{f,238\mathrm{U}}^\mathrm{pred}$	$9.21{\pm}10\%$	$10.10{\pm}8.15\%$		
$\sigma_{f,^{241}\mathrm{Pu}}^{\mathrm{pred}}$	$5.73{\pm}2.1\%$	$5.97{\pm}2.15\%$		
$\sigma_f^{ m pred}$	$5.824{\pm}2.7\%$	$6.102{\pm}2.7\%$		

A ~6 % increase (confirmed by P. Huber)

Phys. Rev. D 83 073006 (2011)

The Reactor Antineutrino Anomaly

Mention et al., Phys. Rev. D 83 073006 (2011)

- All previous experiments short baselines (<100m) shifted with respect to re-evaluated spectra
 - Updated observed/predicted averaged event ratio: $R = 0.938 \pm 0.023$ (2.7 σ)
- Possible explanations:
 - Wrong estimation of antineutrino spectrum
 - A possible hint for new physics ...

Forth neutrino hypothesis

 $P_{\nu_e \to \nu_e} = 1 - \sin^2(2\theta_{ee}) \sin^2(\frac{\Delta m_{41}^2 L}{E})$

Best fit: $\sin^2(2\vartheta) \approx 0.1$ and $\Delta m^2 \approx 1.5 \text{ eV}^2$

- LEP has constrain the number of (active) neutrinos that couple the Z boson
 - Open possibilities for very heavy or sterile neutrinos
- Sterile neutrinos invoked to explain the LSND excess

Terra incognita

- Oscillations due to an (additional) sterile neutrino are not excluded from other data sets
 - Hints from other experiments in the same channel
 - Further input is needed ! Very short-baseline reactor experiment

The Gallium anomaly and the T2K $v_{\rm e}$ disappearance result

Gallex and SAGE

- Four calibration runs with intense MiC neutrino sources
 - ⁵¹ Cr source, 750 keV v_e emitter
 - ³⁷Ar source, 810 keV v_e emitter

Tokai to Kamioka (T2K)

 Analysis using the beam v_e contamination at near detector

Global v_e disappearance analysis

$$\sin^2 2\theta_{ee} \equiv 4|U_{e4}|^2(1-|U_{e4}|^2)$$

- Reactor and Gallium anomalies appear to be quite compatible with each other
- Constraints from:
 - LSND and KARMEN ¹²C data
 - Medium baseline reactor exp.
 (Chooz, Palo Verde, etc ...)
 - Solar experiments and KamLAND
- Tension between appearance and disappearance experiments
 - No v_{μ} disappearance
 - Recent result from IceCube

New experimental test needed

Also: Tritium decay experiments, ie., KATRIN

The SoLid collaboration

Experimental layout

- Detector modules installed at a distance of ~ 5 - 10 m from the BR2 reactor
 - Precise reactor antineutrino oscillometry
- ²³⁵U flux measurement
 - Improve reactor flux prediction
 - Demonstrate reactor monitoring

Challenges

- Small oscillation effect
 - Large statistics, good understanding of systematics
- Requires small reactor core (<1m)
 A few meters oscillation length
- Cover a large baseline range
 Good vertex and energy resolution
- Control of background is the key
 - Close proximity to a nuclear reactor
 - Low overburden (almost on surface)

BR2 reactor at SCK•CEN

- Research nuclear reactor
 - Highly enriched in ²³⁵U
- High operating thermal power
 - Typical values between 40 and 80 MW
- Compact antineutrino source
 - 50 cm effective core diameter
- 150 days per year duty cycle
 - Reactor off running data for background understanding and subtraction
- Low reactor correlated background rate (compared with other sites)
- Large available space covering baselines of 5.5 to 12 m
- Good collaboration with SCK•CEN

The SoLid detector design

- $5 \times 5 \times 5$ cm PVT cubes
- Non-flammable scintillator

- Cubes are optically separated
- ⁶LiF:ZnS(Ag) for neutron identification
- Light collected WLS fibers and multipixel photon counters (MPPCs)

Squared BCF-91A fiber

v_e detection: Inverse Beta Decay (IBD)

$$\bar{\nu}_e + p \to e^+ + n$$

- High cross-section
- Threshold at 1.8 MeV
- Prompt-delayed coincidence

Pulse shape discrimination (PSD) in ⁶LiF:ZnS(Ag) screens

 $n + {}^{6}\text{Li} \rightarrow {}^{3}\text{H} + \alpha + 4.78 \text{ MeV}$

⁶LiF:ZnS(Ag)

Event topology in SoLid

Inverse beta decay event

Fast neutron event

- High granularity allows for signal localization and thus enhances significantly the background rejection
- Possible fast neutron rejection through event topology

Detector development

SoLid Module 1 (SM1)

- 16 × 16 PVT cubes grouped together to form a single *detector* plane
 - Mechanical support with aluminum frame
 - HPDE to reduce neutron dissipation

9 planes totally, 288 kg 288 readout channels 80 × 80 × 45 cm

SM1 construction

- 300 cubes machined and assembled
 - Wrapped with tyvek and carefully weighted
 - Number of protons determined with better than 1 % accuracy

Single detector plane under construction

Deployment at BR2

Data taking

- SM1 run at 12/14 03/15
 - Detector commissioning
 - 3 4 days reactor on
 - ~ 1 month reactor off

- Detector calibration
 - ⁶⁰Co and AmBe (04/15)
 - ²⁵²Cf in situ (08/15)

Cosmic muons

Crossing muon event

- Excellent muon tracking due to detector segmentation
- Detector calibration and stability monitoring using cosmic muons
- Provides handle on muon correlated background rejection

Calibration with cosmics

- In-situ energy calibration using dE/dx
 - Channels inter-calibration
 - Cube response equalization
- Light yield measured: 25 PA/cube
- MPPC gain measured with dark cnts rate
 - No need for light injectors

Calibration stability

- First look at the stability over time
 - A few % deviations in the energy scale only
 - Temperature well-controlled in BR2

Muon daughters: michel electrons

$\mu^{-} \rightarrow e^{-} + \nu_{\mu} + \overline{\nu}_{e}$

- Michel decay probes the tagging of prompt-delayed coincidences
 - DAQ is well behaving
- Large sample of michel electrons that can be used for calibration
 - Higher energy range than IBD

Neutron identification

- Neutron identification using pulse shape discrimination
 - Slow scintillation light for neutron captures in with ⁶LiF:ZnS(Ag)
- Method employing the integral and amplitude of the pulses
 - Both fibers (channels) exploited
- Data show impressive EM/n discrimination capabilities
 - To be implemented in the online trigger (data reduction)

Neutron identification (cont'd)

Can distinguish a neutron in millions of signals !

Neutron source calibration

- Calibration runs with AmBe source
 - AmBe is a fast neutron emitter
- Probe detector behavior
- Study prompt-delayed coincidence
 - Time-space correlation, neutron efficiencies, etc...

prompt to neutron capture time difference (AmBe source)

Geant 4 simulation

Muon daughters: spallation neutrons

- Muon induced (spallation) neutrons traced in SM1 data
 - Similiar selection as with michels
 - Capture time in good agreement with AmBe data
- Control sample that can serve different purposes:
 - Detector stability versus time
 - Neutron identification studies
 - Tune neutron selection
 - Ongoing analysis, synergies with muon selection and muon products rejection (muon veto)

Neutron capture time: summary

Neutron capture time on LiF:ZnS(Ag)

IBD analysis

- First data processing completed:
 - Data reduction, filtering, calibration and reconstruction
 - SM1 Monte-Carlo response tuning ongoing
 - Study of background events and selection cuts started
 - Expecting S/N_{acc} around 2 using cube segmentation
- Aim for result early next year
 - Stay tuned !

IBD candidate

Saffron event: 1087, time range: (86181.0, 86381.0) us

Future plans: 2016-2017

Phase I experimental set up SoLid detector modules 288 kg Phase 1 configuration 0.45 m - 8 modules (M1 built) 2 tonnes 2422 AND ADDRESS OF Е 0. lead wall 2m438 ____2m438 5m02 029 50 cm effective Ø 25 5.0 m 23 BR2 core 3 m 6 C9 150 days reactor on

Future plans: 2017-2020

Phase II experimental set up

CHANDLER R&D Effort

🛄 Virginia Tech

<u>Cube String Studies</u> have been used to study light production, light collection, light attenuation, energy resolution and wavelength shifter concentration.

<u>MicroCHANDLER</u> is a $3 \times 3 \times 3$ prototype which we are using to test our full electronics chain, develop the data acquisition system, study neutron capture identification and measure background rates.

<u>MiniCHANDLER</u> is a **fully funded** systems test $(8 \times 8 \times 5)$ which is currently under construction and will be deployed at a commercial nuclear power plant. It will be operational winter 2016.

J. Link, Aspen 2016

Jonathan Link

Sensitivity to sterile neutrino

- Analysis independent of the total flux normalization and spectrum
 - Good control on detector systematics
 - Energy resolution is crucial
- Best fit covered within the first year of data taking
- Second phase will cover most of the allowed region

Other physics goals

• Precise measurement of the reactor \overline{v}_{e} spectrum

Recent interest after the 5 MeV bump observation

- Synergy with reactor monitoring and nuclear weapons non-proliferation efforts
- For instance: Huber et al., PRL 113, 042503 (2014)

Ending themes

- SoLid experiment will make a very sensitive search for \overline{v}_e disappearance using a novel detector
- SM1 operation has been very successful
 - Excellent EM/neutron identification
 - Low background at BR2 has been confirmed
 - Precise calibration with muons (cube equalization ~1.5%)
- Further results from SM1 expected this year !
- R&D phase completed
 - Light yield increase and mechanical design
 - Electronics, neutron trigger
 - Cost estimation ongoing

• ERC-SoLid funding has been granted to Antonin Vacheret !

Phase I to start in the second half of 2016

Thank you for your attention !

Leonidas N. Kalousis leonidas.kalousis@vub.ac.be

SPARES

Pioneering experiments

R. Davis' chlorine experiment

Oscillation patterns

KamLAND detector is surrounded by several reactors at different distances

- Signature of neutrino oscillations seen by many experiments
 - Clear oscillatory patterns that cannot be reproduced by other possible mechanisms (neutrino decay, etc ...)

Two flavour approximation

- Three flavour are highly suppressed since $|\Delta m^2_{31}| << \Delta m^2_{21}$ and $\cos^2(2\theta_{13}) \approx 1.0$
- Dominant oscillations are well described by effective two-flavour oscillations.
- One mixing angle no complex phase.

$$\mathcal{U} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$p(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^{2} 2\theta \sin^{2} \frac{\Delta m^{2} L}{4E}$$
Appearance probability
Typical oscillatory behaviour
$$\theta = \pi/4, E = 1 \text{ GeV and } \Delta m^{2} = 0.001 \text{ eV}^{2}$$
Oscillation appearance probability

$$\theta = \pi/4, E = 1 \text{ GeV and } \Delta m^{2} = 0.001 \text{ eV}^{2}$$

$$\theta = \pi/4, E = 1 \text{ GeV and } \Delta m^{2} = 0.001 \text{ eV}^{2}$$

$$\theta = \pi/4, E = 1 \text{ GeV and } \Delta m^{2} = 0.001 \text{ eV}^{2}$$

$$\theta = \pi/4, E = 1 \text{ GeV and } \Delta m^{2} = 0.001 \text{ eV}^{2}$$

27

<E> = 1 GeV and ΔE = 0.1 GeV

Friday, 24 May 13

	Tech	Reactor	P [MW]	L (m)	M (tonnes)	Starting dates
Nucifer	LS+Gd	OSIRIS	70	7	0.8	ended 2015
POSEIDON	LS+Gd	PIK	100	5-8	~3	not funded
STEREO	LS+Gd	ILL	57	8.8-11.2	1.75	Aug 2016
Neutrino-4	LS+Gd	SM3	100	6-12	1.5	2014 - ended ?
PROSPECT	LS + Gd/ ⁶ Li	ORNL HFIR	85	7-18	1 & 10	awaits funding
SoLid	PVT + ⁶ LiF:ZnS	SCK•CEN BR2	45-80	5.5-11	1.44/2.88	2016
DANSS	PS + Gd	KNPP	3000	9.7-12.2	0.9	2016 ?
NEOS	PS + Gd/ ⁶ Li	Hanaro/ Younggwa	30-2800	6-?	~1	2015 at PWR
CeSOX	LS	-	N/A	5-14	20	Dec 2016

MicroBooNE

The first phase of the next generation SBN Program begins soon with MicroBooNE coming online later this year!

A.Ereditato -NUFACT14

The SoLid detector design

- Segmented detector made of PVT cubes
 - High granularity allows for signal localization and thus enhances significantly the background rejection
 - Non-flammable organic scintillator
- Scintillator cubes intervened with ⁶LiF:ZnS(Ag)
 - Improves antineutrino signature through neutron identification
- Light collected through wavelength shifting (WLS) optical fibers and multi-pixel photon counters (MPPCs)

Read out

- Both scintillator light collected by wavelength shifting fibre
- MPPC read out at both end of fibre

Squared BCF-91A fibre

MPPC 3 mm x 3 mm 50 um pixel pitch 60-65% active area Pixel RC cnst~13 ns PDE ~ 30-40%

Explanations?

Direct summation of latest ENSDF database, assuming allowed beta-spectrum shape Dwyer and Langford, 2014

This direct summation, as all other direct summations, does not agree with the Schreckenbach total beta-spectrum.